
13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 113th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop14 April 2008 114 April 2008

Programmability of the HPCS
Languages: A Case Study with
a Quantum Chemistry Kernel

Aniruddha G. Shet, David E. Bernholdt,

Wael R. Elwasif, and Robert J. Harrison

Oak Ridge National Laboratory

Research sponsored in part by the Laboratory Directed Research and Development Program and Post Masters Research
Participation Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U. S. Department of
Energy under Contract No. DE-AC05-00OR22725

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 214 April 2008

Today: Approaching a Peak Petaflop

• Hardware characteristics (~100-300 Teraflops peak)
– 10,000-100,000 processors
– 2-4 cores per processor
– Homogeneous processor environment

• Application characteristics
– Scaling up problem size/resolution
– Increasing physical fidelity/model complexity
– Early explorations of coupled simulation

• Dominant programming model
– Sequential language (Fortran/C/C++)
– 2-sided messaging library (MPI)
– threads (OpenMP)
– Age: ~30 years

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 314 April 2008

Tomorrow: Sustained Petaflops
and Beyond

• Hardware characteristics (10-100 petaflops peak)
– 100,000-1,000,000 processors
– 100-1,000 cores per processor
– Heterogeneous processor environment may be common

• Example: LANL Roadrunner: Opteron, PowerPC, Cell
• Also GP-GPUs, integrated GPUs, FPGAs, etc.

• Application characteristics
– Scaling up problem size/resolution leveling off
– Increasing physical fidelity/model complexity
– Serious coupled simulation
– Serious algorithmic scaling challenges

• Increase in multi-level parallelism
• Increase in adaptive representations, irregular computations

• Dominant programming model
– ???

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 414 April 2008

Next-Generation HPC
Programming Languages

• HPCS (High Productivity Computing Systems) Languages
– Chapel (Cray), Fortress (Sun), X10 (IBM)
– Embody key features for productivity, expressiveness

• Higher-level core language
– Rich array data types, object oriented, generic programming, library-

oriented, extensible

• Integrated concurrency
– Task and data parallelism, multi-level concurrency, parallel

loops/generators/iterators, atomic sections, futures, etc.

• Global view of data
– Distributed data types, one-sided access model, ZPL-like “array

language”

• Backed by significant DARPA HPCS and vendor investment
• If not the future choice, then representative of it

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 514 April 2008

Fock Matrix Construction
(Quantum Chemistry)

Fμν← Dλσ { 2 (μν|λσ) - (μλ|νσ) }
• Indices μ, ν, λ, σ represent basis functions (N)
• F is Fock matrix, D is density matrix

– Held in core

• (μν|λσ) are “two-electron repulsion integrals”
– Due to permutational symmetries, only O(N4/8) unique
– Can be evaluated on the fly

• In integral-driven algorithm, each integral contracts with six
different D elements, contributing to six different F
elements

• Challenge: irregularity
– Integrals evaluated in blocks of varying size (1-10,000+ integrals)
– Average 500 FLOPs per integral, but wide variation

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 614 April 2008

Fock Build Pseudo-code
• Unblocked loop version without using index symmetry
do i = 1, n
do j = 1, n

do k = 1, n
do l = 1, n
gijkl = g(i,j,k,l) //evaluate integral
jmat(i,j) = jmat(i,j) + dmat(k,l)*gijkl
kmat(i,k) = kmat(i,k) + dmat(j,l)*gijkl

end do
...

• Blocked loop version using index symmetry
do iat = 1, natom

do jat = 1, iat
do kat = 1, iat

lattop = kat
if (kat .eq. iat) lattop = jat
do lat = 1, lattop

call buildjk_atom4(/*integral block*/)
end do

...

Index symmetry
gijkl = gijlk =
gjikl = gjilk =
gklij = gklji =
glkij = glkji

Each call to
buildjk_atom4 is a
parallel task

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 714 April 2008

Scalable Fock Build Algorithm

D F

Integrals (μν|λσ)
P0 P1 P2 P3 P4 …

Hierarchically blocked, dynamically load balanced, integral-driven

• Idea first implemented by Furlani and King (1995) using MPI
– Efficient implementation (up to 16 CPUs) required heroic effort
– Privately, approach not considered viable in general

• Inspired development of Global Array Toolkit (PNNL)
– Library-based implementation of PGAS concepts

• NWChem implementation (1995) using GA scales to 1000s of CPUs
– Simple to code

D, F
global-view
distributed
arrays

task-local working blocks

work pool
of integral
blocks

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 814 April 2008

HPCS Language Features Used In
Fock Matrix Build (1)

Language constructs usedLoad balancing
approach

not currently
specified

multi-generator
for loops

distributionsDynamic, Language
(Runtime) Managed

asynchronous
activities +

locality control

for loops +
generators +

locality control

forall loops +
iterators +

locality control

Static, Program Managed

unconditional
atomic sections

atomic
expressions

synchronization
variables

Shared
counter

conditional
atomic sections

abortable
atomic

expressions

synchronization
variables

Task poolDynamic,
Program
Managed

X10 (IBM)Fortress
(Sun)

Chapel
(Cray)

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 914 April 2008

HPCS Language Features Used In
Fock Matrix Build (2)

Language constructs usedOperations

restrictionarray factory
function

(subarray)

slicingsub-array

array class
methods

(add,scale)

fortress library
operators

(+,juxtaposition)

array
promotions of

scalar
operators (+,*)

arithmetic

array
initialization

functions

function
expressions

array
initialization
expressions

initializationGlobal-
view array
operations

finish async
(task) +

ateach (data)

tuple (task) +
for loop (data)

cobegin (task)
+ forall loop

(data)

Mixed data and task
parallelism

X10 (IBM)Fortress
(Sun)

Chapel
(Cray)

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 1014 April 2008

HPCS Languages: Concurrency

• Not strictly SPMD!
– Initially single conceptual thread of control, parallelism through

language constructs

• True global view of memory, one-sided access model
• Support for both task and data parallelism, locality

control
• “Threads” grouped by “memory locality”

– Explicitly two level (Chapel, X10), or hierarchical (Fortress)

• Rich distributed array capability
– Programmer-provided distribution details

• Parallel loops/iterators/generators
• Atomic sections
• Futures

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 1114 April 2008

X10 Programming Model

• Dynamic parallelism with a Partitioned Global Address Space
• Places encapsulate binding of activities and globally addressable data

• Number of places currently fixed at launch time
• All concurrency is expressed as asynchronous activities

• Subsumes threads, structured parallelism, messaging, DMA transfers, etc.
• Atomic sections enforce mutual exclusion of co-located data

• No place-remote accesses permitted in atomic section
• Immutable data offers opportunity for single-assignment parallelism

Storage classes:

• Activity-local

• Place-local

• Partitioned
global

• Immutable

Source: IBM X10 tutorial

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 1214 April 2008

X10 vs Java
• X10 language builds on

the Java language
– Shared underlying

philosophy: shared
syntactic and semantic
tradition, simple, small,
easy to use, efficient to
implement, machine
independent

• X10 does not have
– Dynamic class loading
– Java’s concurrency

features
• Thread library, volatile,

synchronized, wait,
notify

• X10 restricts
– Class variables and static

initialization

• X10 adds to Java
– Value types, nullable
– Array language

• Multi-dimensional arrays,
aggregate operations

– New concurrency features
• Activities (async, future),

atomic blocks, clocks
– Distribution

• Places, distributed arrays

Source: IBM X10 tutorial

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 1314 April 2008

HPCS Language Features Used In
Fock Matrix Build (1)

Language constructs usedLoad balancing
approach

not currently
specified

multi-generator
for loops

distributionsDynamic, Language
(Runtime) Managed

asynchronous
activities +

locality control

for loops +
generators +

locality control

forall loops +
iterators +

locality control

Static, Program Managed

unconditional
atomic sections

atomic
expressions

synchronization
variables

Shared
counter

conditional
atomic sections

abortable
atomic

expressions

synchronization
variables

Task poolDynamic,
Program
Managed

X10 (IBM)Fortress
(Sun)

Chapel
(Cray)

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 1414 April 2008

Static, Program Managed – X10
• Cyclic distribution of integral blocks

Integrals (μν|λσ)
Places 0 1 MAX – 1 0 1 ….

place placeNo = place.FIRST_PLACE;
finish for(point [iat] : [1:natom])
for(point [jat, kat] : [1:iat, 1:iat])

for(point [lat] : [1:(kat==iat?jat:kat)]) {
async (placeNo)
buildjk_atom4(new blockIndices(...));

placeNo = placeNo.next();
}

Initialize our place variable
finish waits until all blocks are
evaluated
Loop over the iteration space
Launch an activity on (remote)
place to evaluate new block
Get next place, in cyclic order

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 1514 April 2008

Dynamic, Program Managed – X10
• Shared counter

int G = 0;
finish ateach(point [p] :

dist.factory.unique(place.places)) {
int myG, L = 0;
future<int> F = future (place.FIRST_PLACE)

{read_and_increment_G()};
myG = F.force();
for(point [iat] : [1:natom])

for(point [jat, kat] : [1:iat, 1:iat])
for(point [lat] : [1:(kat==iat?jat:kat)]) {
if (L == myG) {

F = future (place.FIRST_PLACE)
{read_and_increment_G()};

buildjk_atom4(new blockIndices(...));
myG = F.force();

}
++L;

}
}

Global counter G
ateach launches the
algorithm on each place

Loop over the iteration
space

Local counter L

atomic myG = G++; //Atomic read-and-increment

Get next task

Execute task on a
match

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 1614 April 2008

Chapel Programming Model
• Multithreaded parallel programming

– Global view of computation, data structures
– Abstractions for data and task parallelism

• data: domain, forall, iterators
• task: begin, cobegin, coforall, sync variables,
atomic

– Composition of parallelism
– Virtualization of threads

• Locality-aware programming
– locale: machine unit of storage and processing
– domains may be distributed across locales
– on keyword binds computation to locale(s)

Source: Cray Chapel presentation

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 1714 April 2008

Chapel Programming Model
• Object-oriented programming

– OOP can help manage program complexity
– Classes and objects are provided in Chapel, but

their use is typically not required
– Advanced language features (e.g. distributions)

expressed using classes

• Generic programming and type inference
– Type parameters
– Latent types
– Variables are statically-typed

Source: Cray Chapel presentation

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 1814 April 2008

HPCS Language Features Used In
Fock Matrix Build (1)

Language constructs usedLoad balancing
approach

not currently
specified

multi-generator
for loops

distributionsDynamic, Language
(Runtime) Managed

asynchronous
activities +

locality control

for loops +
generators +

locality control

forall loops +
iterators +

locality control

Static, Program Managed

unconditional
atomic sections

atomic
expressions

synchronization
variables

Shared
counter

conditional
atomic sections

abortable
atomic

expressions

synchronization
variables

Task poolDynamic,
Program
Managed

X10 (IBM)Fortress
(Sun)

Chapel
(Cray)

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 1914 April 2008

Dynamic, Program Managed – Chapel
• Taskpool of integral blocks

S-1

…

tail head

producers consumers

0

1

class taskpool {
const poolSize;
var taskarr : [0..poolSize-1]

sync blockIndices;
var head, tail : sync int = 0;
def add(blk : blockIndices) {

const pos = tail;
tail = (pos+1)%poolSize;
taskarr(pos) = blk;

}
def remove() {

const pos = head;
head = (pos+1)%poolSize;
return taskarr(pos);

}
}

Runtime configurable taskpool size

Add a block at tail position

Consume the block at head position

head and tail manage the taskpool

Circular queue of integral blocks

Sync variables synchronize access of the
taskpool by multiple producers and
consumers

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 2014 April 2008

Dynamic, Program Managed – Chapel
• Producer/consumer interaction via taskpool

const poolSize = numLocales;
const t = new taskpool(poolSize);
cobegin {
coforall loc in LocaleSpace
on Locales(loc) do consumer();

producer();
}

Runtime configurable taskpool size
Create the taskpool
Execute producers and consumers in
parallel

/* genBlocks is an iterator that
yields the collection of
integral blocks */

forall blk in genBlocks() do
/* add a block to the

taskpool */
t.add(blk);

producer

/* consume a block from the
taskpool */

var blk = t.remove();
while (blk != nil) {
const copyofblk = blk;
cobegin {

buildjk_atom4(copyofblk);
blk = t.remove();

}
}

consumer

on clause binds one consumer to one locale

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 2114 April 2008

Fortress Programming Model

• A growable, open language
– Push decisions out to libraries

• Math/science-based presentation

• Type system – objects and traits

• Security model, including type safety

• Component management, testing, contracts

• Efficient abstractions

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 2214 April 2008

Fortress Programming Model

• Encapsulate parallelism in libraries

• Data model – shared global address space

• Control model – multithreaded
– Both explicit and implicit threads

• Abstractions for managing thread and data
distribution

• Transactional access to shared variables
– Atomic blocks, lock-free

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 2314 April 2008

HPCS Language Features Used In
Fock Matrix Build (1)

Language constructs usedLoad balancing
approach

not currently
specified

multi-generator
for loops

distributionsDynamic, Language
(Runtime) Managed

asynchronous
activities +

locality control

for loops +
generators +

locality control

forall loops +
iterators +

locality control

Static, Program Managed

unconditional
atomic sections

atomic
expressions

synchronization
variables

Shared
counter

conditional
atomic sections

abortable
atomic

expressions

synchronization
variables

Task poolDynamic,
Program
Managed

X10 (IBM)Fortress
(Sun)

Chapel
(Cray)

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 2414 April 2008

Dynamic, Runtime Managed – Fortress

• Fortress for loops are parallel by default

• Parallelism in for loops is given by the generator list

• Generator list defines a nested order of iterations

• Iterations are evaluated by implicit threads spawned
and managed by the runtime

• Generators are a library feature that control the
mapping of threads to processors

• Users can write their own specialized generators

Parallel loop
nest handles
the mapping
of threads to
processors

for iat<-1#natom, jat<-1#iat, kat<-1#iat,
lat<-1#(if (kat=iat) then jat else kat end) do

buildjk_atom4 blockIndices(…)
end

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 2514 April 2008

HPCS Language Features Used In
Fock Matrix Build (2)

Language constructs usedOperations

restrictionarray factory
functions

(subarray)

slicingsub-array

array class
methods

(add,scale)

fortress library
operators

(+,juxtaposition)

array
promotions of

scalar
operators (+,*)

arithmetic

array
initialization

functions

comprehensions
/ function

expressions

array
initialization
expressions

initializationGlobal-
view array
operations

finish async
(task) +

ateach (data)

tuple (task) +
for loop (data)

cobegin (task)
+ domain

iterator (data)

Mixed data and task
parallelism

X10 (IBM)Fortress
(Sun)

Chapel
(Cray)

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 2614 April 2008

Mixed Task and Data Parallelism
Fortress

• (,) is a tuple expression

• Tuple elements are evaluated in parallel by
separate implicit threads

• t() is an array factory function that employs a for
loop over the array indices

(jmat2T,kmat2T) = (jmat2.t(),kmat2.t())

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 2714 April 2008

Mixed Task and Data Parallelism
Chapel

• cobegin launches parallel tasks

• [(i,j) in D] is a parallel loop derived ”automatically”
from the domain (index space) D

• Each task iterates over the elements of the distributed
array in parallel

cobegin {
[(i,j) in D] jmat2T(i,j) = jmat2(j,i);
[(i,j) in D] kmat2T(i,j) = kmat2(j,i);

}

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 2814 April 2008

Mixed Task and Data Parallelism
X10

finish {
async ateach(point[i,j] : D)
jmat2T[i,j] = future (D[j,i])

{jmat2[j,i]}.force();
async ateach(point[i,j] : D)
kmat2T[i,j] = future (D[j,i])

{kmat2[j,i]}.force();
}

• ateach creates parallel activities that operate on points in the
distribution D of the array

• The two ateach statements run in parallel because of asyncs

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 2914 April 2008

HPCS Language Features Used In
Fock Matrix Build (2)

Language constructs usedOperations

restrictionarray factory
functions

(subarray)

slicingsub-array

array class
methods

(add,scale)

fortress library
operators

(+,juxtaposition)

array
promotions of

scalar
operators (+,*)

arithmetic

array
initialization

functions

comprehensions
/ function

expressions

array
initialization
expressions

initializationGlobal-
view array
operations

finish async
(task) +

ateach (data)

tuple (task) +
for loop (data)

cobegin (task)
+ domain

iterator (data)

Mixed data and task
parallelism

X10 (IBM)Fortress
(Sun)

Chapel
(Cray)

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 3014 April 2008

Global-View Array Arithmetic
Operations

+, * are promoted over
arrays

+ and juxtaposition are
Fortress library operators

add and scale are array
class methods

jmat2 = jmat2.add(jmat2T).
scale(2);

kmat2 = kmat2.add(kmat2T);

X10

jmat2 = 2*(jmat2+jmat2T);
kmat2 += kmat2T;

Chapel

jmat2 := 2(jmat2+jmat2T)
kmat2 := kmat2+kmat2T

Fortress

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 3114 April 2008

Conclusions

• We’ve modeled an algorithm which combines task parallelism
with distributed data access in the HPCS languages

• Languages provide a rich set of concurrency and distribution
abstractions that can be composed at multiple levels to expose
maximum parallelism

• Beginning to understand how important algorithms can be
expressed with new programming models
– Many more applications to explore

• Further investigation is required into the efficient mapping of
parallelism to diverse hardware without loss of expressiveness
– Research topic for language teams and others

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 3213th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop14 April 2008 3214 April 2008

Backup slides

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 3314 April 2008

Dynamic, Program Managed – X10
• Taskpool of integral blocks

public class taskpool {
final int poolSize;
final blockIndices [] taskarr;
int head = -1, tail = -1;
public void add(blockIndices blk) {

when (head != (tail+1)%poolSize) {
tail = (tail+1)%poolSize;
taskarr[tail] = blk;
if (head == -1) head = tail;

}
}
public blockIndices remove() {

when (head != -1) {
final blockIndices blk =
taskarr[head];

if (blk != nullBlock)
if (head == tail) head = -1;
else head = (head+1)%poolSize;

return blk;
}

}
}

Runtime configurable taskpool size

Add a block at tail position

Consume the block at head position

head and tail manage the taskpool
Circular queue of integral blocks

Conditional atomic sections
synchronize access of the taskpool
by multiple producers and consumers

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 3414 April 2008

Dynamic, Program Managed – X10
• Producer/consumer interaction via taskpool

final int poolSize = place.MAX_PLACES;
final taskpool t = new taskpool(poolSize);
blockIndices nullBlock;
finish {
ateach(point [p] :

dist.factory.unique(place.places))
consumer();

producer();
}

for(point [iat] : [1:natom])
for(point [jat,kat] : [1:iat,1:iat])

for(point [lat] :
[1:(kat==iat?jat:kat)])

/* add a block to the
taskpool */

t.add(new blockIndices(...));

t.add(nullBlock);

producer

/* consume a block from the
taskpool */

future<blockIndices> F =
future(t) {t.remove()};

blockIndices blk = F.force();
while (blk != nullBlock) {
F = future(t) {t.remove()};
buildjk_atom4(blk);
blk = F.force();

}

consumer

Runtime configurable taskpool size
Create the taskpool

finish waits until producers and
consumers are done

ateach clause binds one consumer
to one place

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 3514 April 2008

Dynamic, Program Managed – Fortress
• Shared counter

numRegs = 10
var G : ZZ32 = 0
for reg<-1#numRegs at region(reg) do
(L,myG):ZZ32... := (0,read_and_increment_G())
for iat<-seq(1#natom), jat<-seq(1#iat),

kat<-seq(1#iat),
lat<-seq(1#(if (kat=iat) then jat

else kat end)) do
if (L = myG) then

do
buildjk_atom4 blockIndices(...)

also do
myG := read_and_increment_G()

end
end
L += 1

end
end
atomic do //Atomic read-and-increment
myG = G
G += 1

end

Global counter G
for creates parallel threads

Loop over the iteration
space

Local counter L

Execute task on a
match

Get next task

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 3614 April 2008

Dynamic, Program Managed – Chapel
• Shared counter

var G : sync int = 0;
coforall loc in LocaleSpace on Locales(loc) {
var (L,lattop,myG) = (0,0,readAndIncrementG());
for iat in 1..natom do

for (jat, kat) in [1..iat, 1..iat] {
lattop = if (kat==iat) then jat else kat;
for lat in 1..lattop {
if (L == myG) then

cobegin {
buildjk_atom4(new blockIndices(...));
myG = readAndIncrementG();

}
L += 1;

}
}

}

const myG : int = G; //Atomic read-and-increment
G = myG + 1;

Global counter G

Local counter L

coforall creates parallel
computations on locales

Loop over the iteration
space

Execute task on a
match

Get next task

13th High-Level Parallel Programming Models and Supportive Environments (HIPS) Workshop 3714 April 2008

Programmability vs Performance
• The easiest way to write a matrix

transpose involves O(N2)
messages (elementwise)

• Reduce to O(P2) (processorwise)
via appropriate tiling of loops

• Possible to do manually, but
non-intuitive and error-prone to
write, harder to read

• Should be possible for compiler
to recognize and do

– Integration of parallelism helps

• High expectations for HPCS
languages to be able to map
multi-level parallelism to diverse
architectures, aggressively
optimize

• Can it be done without sacrificing
programmability?

/* Element-wise transpose = O(N2)*/
finish ateach(point [i,j]:D)

jmat2T[i,j] = future (D[j,i]) {jmat2[j,i]}.force();

/* Each place updates the local portion of the
distributed transpose array by fetching
relevant portions from other places = O(P2)*/
finish ateach(point [p] :

dist.factory.unique(place.places)) {
final region RP = (D | here).region;
final dist DP = dist.factory.blockCyclic(RP,

n/place.MAX_PLACES);
foreach(point [pl] :
dist.factory.unique(place.places)) {

final region RPL = (DP |
place.factory.place(pl)).region;

final double value [.] darr = future
(place.factory.place(pl)) {get(RPL)}.force();

jmat2T.update(darr);
}

}

