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Executive Summary

The vertical grid of an atmospheric model assigns dynamic and thermo-
dynamic variables to grid locations. The vertical coordinate is typically not
height but one of a class of meterological variables that vary with atmo-
spheric conditions. The grid system is chosen to further numerical approx-
imations of the boundary conditions so that the system is terrain following
at the surface. Lagrangian vertical coordinates are useful in reducing the
numerical errors from advection processes. That the choices will effect the
numercial properties and accuracy is explored in this report. A MATLAB
class for Lorentz vertical grids is described and applied to the vertical struc-
ture equation and baroclinic atmospheric circulation. A generalized mete-
orolgoical coordinate system is developed that can support σ, isentropic θ
vertical coordinate, or Lagrangian vertical coordinates. The vertical atmo-
spheric column is a MATLAB class that includes the kinematic and ther-
modynamic variables along with methods for computing geopoentials and
terms relevant to a 3D baroclinc atmospheric model.
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Abstract

The vertical grid of an atmospheric model assigns dynamic and thermo-
dynamic variables to grid locations. The vertical coordinate is typically not
height but one of a class of meterological variables that vary with atmo-
spheric conditions. The grid system is chosen to further numerical approx-
imations of the boundary conditions so that the system is terrain following
at the surface. Lagrangian vertical coordinates are useful in reducing the
numerical errors from advection processes. That the choices will effect the
numercial properties and accuracy is explored in this report. A MATLAB
class for Lorentz vertical grids is described and applied to the vertical struc-
ture equation and baroclinic atmospheric circulation. A generalized meteo-
rolgoical coordinate system is developed which can support σ, isentropic θ
vertical coordinate, or Lagrangian vertical coordinates. The vertical atmo-
spheric column is a MATLAB class that includes the kinematic and ther-
modynamic variables along with methods for computing geopoentials and
terms relevant to a 3D baroclinc atmospheric model.
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1 Introduction

Generalized meteorological coordinates were first explored with isentropic
coordinate models introduced for numerical weather prediction in the 1970’s
[12, 3]. The attraction of the isentropic coordinate model was largely the-
oretical because for adiabatic flow the isentropic surfaces are material sur-
faces. Given the low resolution of atmospheric models, a higher degree of
accuracy could be expected for the advective terms with an isentropic for-
mulation.

Significant problems with the handling of the lower boundary condition
and its implication for conservation and boundary layer approximations were
addressed by the introduction of a hybrid (patched) model [34]. By use of
σ coordinates through the boundary layer, the lower boundary condition
problem was moved to the top of the boundary layer, where isentropic coor-
dinates started. Conservation and consistency conditions were imposed on
the seam between sigma and free atmosphere. This formulation still required
massless layers in the isentropic domain and because of the special care nec-
essary in dealing with these layers, use of isentropic coordinate models was
never widespread.

Isentropic analysis of global weather patterns and circulations continued
to develop and provide a complementary understanding to the isobaric anal-
ysis [33, 17]. The effects of heating on the circulation are most clearly seen
with the isentropic analysis. Heating forces the motion of isentropic surfaces
upward indicating the vertical mass flux which marks the global circulations
of the Hadley and Ferrel cells along with monsoonal variations. The differ-
ential heating of the atmosphere drives a mass circulation whose function
is to transport energy from heat sources to heat sinks. This analysis has
become important for the understanding of regional weather patterns and
climate.

A comparison of an isentropic coordinate model with a sigma models
suggested that the transport properties of the isentropic model may be im-
portant for simulated precipitation and tracer distributions [16, 37]. While
these studies are relevant for weather time scale circulations, another study
suggests the relevance of isentropic coordinate models for climate modeling
[18]. Johnson argues that the cold bias at the poles in nearly all climate
models is an artifact of their formulation. “The cold temperature bias de-
velops to provide for the increased sink of entropy by infrared cooling that is
necessary to offset the positive definite aphysical source of entropy from mix-
ing by numerics and the inadequacies of parameterization.”([18, p.5]) For a
climate model to be without drift and to be ”correct” for coupling with other
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earth system component models energy conservation should be satisfied as
well as the entropy principle. The claim is that spurious entropy sources
can be largely eliminated by choice of an isentropic coordinate sytsem, since
this carefully separates the mixing of energy from vertical advection, and by
choice of potential temperature as the thermodynamic variable.

Recently, the formulation of isentropic coordinate models has become
combined with the continuous (not patched) generalized meteorological co-
ordinate systems introduced in [19, 15]. The paper of Konor and Arakawa
[22] gives a formulation in which the vertical coordinate transitions smoothly
between a sigma coordinate near the earths surface to the isentropic coor-
dinate in the free atmosphere. This formulation has several significant ad-
vantages over earlier work. Foremost is the elimination of massless layers at
the surface and the need to patch coordinates at a seam. The conservation
principles can be developed in the generalized coordinate system without an
arbitrary patch or seam being present.

Lagrangian vertical systems have also received much attention with the
use of the Lin-Rood dynamics [26, 25] in several modeling systems. The
Lagrangian coordinate requires a remapping every so often (at the physics
timestep) to restore the original resolution and keep the mesh from devel-
oping massless layers.

The discretization of the vertical is a matter of considerable study with
an ongoing debate about whether the Lorentz staggering is as good as that
introduced by Charney and Phillips [4] [30]. Recently, the U.K. MetCenter
has developed a atmospheric model based on the Charney-Phillips vertical
grid and their diagnosis of errors is very interesting. This relates to an
old issue concerning the normal modes of the atmosphere and the fact that
Charney’s original argument was flawed in the treatment of a (singular)
Sturm-Liouville problem.

The algorithmic choices for the treatment of vertical terms have impor-
tant implications for the required vertical resolution of atmospheric models
[36] and the treatment the upper boundary condition as applied in the ver-
tical coordinate system. Some of these issues are explored in this report
with the intention of providing tools and a starting point for other research
projects.

2 Generalized Meteorological Vertical Coordinates

2.1 Variables

The variables we will be concerned with are the
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• vertical coordinate (ζ),

• vertical coordinate time derivative (ζ̇),

• pseudo density (π = ∂p

∂ζ ),

• pressure (p),

• surface pressure (ps),

• temperature (T ),

• potential temperature (θ ≡
CpT
Π ),

• horizontal velocity (v).

• horizontal divergence (δ = ∇ζ · v),

• horizontal potential vorticity (η = ξ + f),

• vertical pressure velocity (ω = Dp
Dt ),

• pressure advection (ω̂ = ζ̇ ∂p
∂ζ = ζ̇π),

• geopotential (Φ),

• Montgomery potential (M ≡ cpT + Φ).

• static stability (γ = −T
θ
∂θ
∂p).

• Exner function (Π ≡ cp(
p
p0

)κ),

We will write the generalized vertical coordinate ζ. The horizontal coor-
dinates will not be of concern as we will use the device of writing operators
in horizontal and vertical form.

3 Lorentz Vertical Discretization

The particular organization we will use of the discrete variables staggered
between half and full levels of the grid is called the Lorentz grid. An alter-
native staggering and location of the vertical grid is the Charney-Phillips
grid [30]. The Lorentz grid is used in the Community Atmospheric Model
(CAM3) [6] and this vertical grid module should be compatible with the
CAM discretizations using a hybrid σ− p vertical coordinate. The cell cen-
ters (layers) will be indexed from 1 to K with half levels (cell edges) indexed

3



with half value indices from 1/2 to K+1/2. A pictorial representation of the
Lorentz vertical grid is given in Figure (1). Thermodynamic and horizontal
momentum variables are located at cell centers (integer indices) while the
vertical momenum and pressure variables are located at half index edges.
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1
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k−1
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Figure 1: Lorentz Vertical Grid with Location of Discrete Variables

3.1 Lorentz vertical grid module

The MATLAB class lvgrid sets up a Lorentz vertical grid. The methods of
this class include the obligatory get and set so that the default values can be
over-ridden. The grid class contains only the ζ and ζ̇ variables and routines
that calculate vertical integrals and advection terms that utilize the discrete
coordinates.

The variables and dynamical terms involving the vertical of a baroclinic
atmosphere are provided in the Lorentz vertical column class, lvcolumn. The
thermodynamic variables, lnπ, θ, T along with kinematic variables η, δ, v

are data of the class. Other values are calculated from diagnostic relations
based on the prognostic inputs of the column. For example, the geopotential
Φ is calculated based on the half-index values of the pressure, p and the
integer-index values of the temperature, T .
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Methods of the lvcolumn class compute diagnostic variables using dis-
crete diagnostic relationships and terms of the mass, momentum and energy
equations. The hydrostatic assumption is made for the vertical momentum
equation and the geopotential is computed from this. Diagnostic relations
are updated in the update method of the lvcolumn class. The terms that are

approximated from the continuity and momentum equations are
∂(ζ̇π)

∂ζ , ζ̇ ∂ψ
∂ζ ,

ω and ω̂. The right hand side terms of a baroclinic model are calculated in
the lvterms method.

3.2 Geopotential and the Discrete Hydrostatic Equation

The hydrostatic equation written in a generalized coordinate is

∂Φ

∂ζ
=
RT

p

∂p

∂ζ
, (1)

and in pressure coordinate

∂Φ

∂ ln p
= −RT. (2)

Integrating, the hydrostatic equation can be written as

Φ(ζ) = Φs +R

∫ ps

p(ζ)
Td ln p. (3)

The discretization of the hydrostatic relation introduces the geopotential
and a hydrostatic matrix (see CAM-SLD equation (3.264) [7]),

Φk = Φs +R
K
∑

l=k

HklTl, (4)

where Hkl =
∫ p(ζl−1/2)

p(ζl+1/2)
d ln p for l ≥ k and 0, otherwise. Similarly, for terms

in the energy equation

∫ p(ζ)

ptop

δdp =
k
∑

l=1

Dlkδl, (5)

where Dlk =
∫ p(ζl−1/2)

p(ζl+1/2)
dp for l ≤ k and 0, otherwise.

Remark: The approximation of the hydrostatic relation in the vertical
determines many of the numerical properties of the model. If a higher
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order numerical approximation is desired, this can be formulated using basis
functions {ψl} to represent the temperature. Let

T (p) =
∑

l

Tlψl(p). (6)

The Tl must now be interpreted as node values with the Lorentz grid cell
edges thought of as B-Spline knots, for example. Substituting into the hy-
drostatic relation,

Φ(ζ) = Φs +R
∑

l

Tl

∫ ps

p(ζ)
ψl(p)d ln p. (7)

This is the same form regardless of the choice of the basis functions with

Hkl =
∫ p(ζl−1/2)

p(ζl+1/2)
ψl(p)d ln p. For a linear B-Spline basis, the standard vertical

discretization is obtained. A compact method for the hydrostatic equation
using Laguerre polynomials is described in appendix B.

3.3 Thermal Wind

The accuracy of the vertical discretization will be partially determined by
how well the discretization approximates the dominant terms coming from
the hydrostatic equation and the thermal wind relationship.

The thermal wind relationship (in pressure coordinates) is derived from
the hydrostatic relation [[14], p. 70] and can be expressed,

fk×
∂v

∂ ln p
= −R∇pT. (8)

The vertical discretization at a level k follows the discretization of the hy-
drostatic equation so

vk = vs +
R

f

K
∑

l=k

Hkl(k×∇pTl). (9)

The thermal wind equation shows how closely coupled the horizontal flow
is with the vertical structure through the hydrostatic approximation. Tem-
perature gradient approximation and the hydrostatic approximation couple
multiple levels through this equation.
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3.4 Vertical Advection

The difference scheme for advection in the vertical should conserve momen-
tum and kinetic energy (or vorticity and enstrophy) as per Arakawa. We
consider advection schemes that conserve ψ and ψ2, in the equation

∂ψ

∂t
+ ζ̇

∂ψ

∂ζ
= 0. (10)

On the Lorentz grid ζ̇ is located on cell edges. The vertical discretization
that conserves ψ and ψ2 is

(ζ̇
∂ψ

∂ζ
)k =

1

2(ζk+1/2 − ζk−1/2)

[

ζ̇k+ 1

2

(ψk+1 − ψk) + ζ̇k− 1

2

(ψk − ψk−1)
]

.

(11)

For fields located on the integer index layers, the lvgrid class method
that computes the advection term is kadvect. For fields located at the half
index edges, the method is hadvect.

The vertical advection term in the ζ coordinate can also be expressed in
terms of pressure as

ζ̇
∂

∂ζ
= −mζ̇

∂

∂p
= ω̂

∂

∂p
. (12)

where

ω̂ = ζ̇
∂p

∂ζ
= ζ̇π. (13)

The ω̂ is computed as a diagnostic relation in the lvcolumn class update
method.

3.5 Vertical Mass Flux

The vertical mass flux term that appears in a continuity equation is

∂

∂ζ
(ζ̇π). (14)

The k-th layer approximation is

(

∂

∂ζ
(ζ̇π)

)

k

=
1

2(ζk+1/2 − ζk−1/2)

[

ζ̇k+1/2(πk+1 + πk) − ζ̇k−1/2(πk + πk−1)
]

.

(15)

The method vflux of @lvgrid computes this term.
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3.6 Vertical Integral Terms

The energy equation involves ω , the vertical pressure velocity, which can
be expressed using the continuity equation. We have

ω ≡
Dp

Dt
= v · ∇ζp−

∫ ζ

ζ top

∇ζ · (πv)dζ. (16)

This is written as

ω = v · ∇ζp−

∫ ζ

ζtop

v · ∇ζπdζ −

∫ p(ζ)

ptop

δdp. (17)

The integrals appearing in this expression are computed using the lvgrid
methods vintz and vintp with the rectangle rule

∫ ζk+1/2

ζ top

ψdζ =
k
∑

l=1

ψl(ζl+1/2 − ζ l−1/2), (18)

∫ p(ζk+1/2
)

ptop

δdp =
k
∑

l=1

δl(pl+1/2 − pl−1/2). (19)

4 Test Methods

Unit tests that exercise the lvcolumn and lvgrid classes are included in the
test method of lvcolumn and VSE that solves the vertical structure equation.
In addition to checking the implementation these tests also illustrate the use
of the module and its approximations.

4.1 Vertical Structure Equation

A separation of variables technique applied to the 3-D baroclinic equations
leads to consideration of the vertical modes of the atmosphere [1, 20]. The
vertical structure equation (VSE) is an example of the use of the vertical
discretization, and a test of the numerics of the Lorentz grid. The vertical
structure function Z may also be derived from the barotropic vorticity equa-
tion in 3-D [29] [9]. The equation for Z, in terms of pressure coordinates,
is

d

dp

(

p

Rγ

dZ

dp

)

+
Z

gH
= 0. (20)
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with boundary conditions

p
dZ

dp
= 0, at p = ptop (21)

dZ

dp
+

γ

Ts
Z = 0, at p = ps. (22)

The parameters are R the ideal gas constant, g is the gravitational accel-
eration, γ the static stability parameter with γ = −T

θ
∂θ
∂p . H is referred to

as the eigenvalue of equivalent depth (and will be found as part of the solu-
tion of the eigenanalysis). The thermodynamic variables in the atmospheric
column are T temperature and θ potential temperature.

The eigenvalue problem reveals the “normal modes” of the vertical struc-
ture. An interpretation of the implications for representing atmospheric
data is given in [1]. The approach through normal modes [9] also lends
itself to analysis of particular meteorological events. Their use in determin-
ing model vertical resolution is discussed in [36]. Normal modes are also
used to separate and control “fast” gravity modes from the “slow” Rossby
modes. Machenhauer [27] and Baer [2] first used normal mode initialization
for weather models and Daley [8] suggests their use for the development of
long time step integration methods.

The vertical structure equation, and the normal modes, are involved in
a fundamental way in the development of turbulence theory for the atmo-
sphere. The formulation of the boundary conditions for the vertical structure
equation determines the energy closure for atmospheric flow. The closure
assumptions give rise to a misconception that has followed atmospheric mod-
eling since Charney [21]. The misconception arises because the top of the
atmosphere is not a rigid boundary. Defining the vertical domain from sur-
face to infinity, or from surface pressure to zero pressure, leads to a singular
Sturm-Lioville problem [5]. Since the coefficient p

Rγ of the Sturm-Lioville
problem vanishes as p→ 0 (and the σ- coordinate interval expands to [0, 1])
the VSE is a singular Sturm-Liouville problem. This choice of ptop = 0 corre-
spondes to an infinite extent of the upper atmosphere. What is usually done
is to set ptop to a small positive number corresponding to a σ interval of,
for example, [0.028, 1]. This eliminates the singularity of the Sturm-Lioville
problem turning it into a regular Sturm-Lioville problem. In either case, the
theory says that there exist a complete set of orthonormal modes. Unfor-
tunately, the choice of boundary condition may lead to elimination of some
modes all together. The choice made by Charney, dZ

dp = 0 at the singular
point, overspecifies the problem eliminating modes that potentially carry
energy in the dynamic energy cascade. The correct singular Sturm-Lioville
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boundary condition is Z bounded(finite) at ptop = 0. In this case, the spec-
trum of the singular operator is not discrete, there is continuous spectrum
associated with the infinite extent of the domain.

The numerical treatment of the spectrum is an issue for all vertical coor-
dinate systems. The choice of a finite, rigid lid for the atmosphere, ptop > 0
is a regularization of the problem with possibly unintended smoothing ef-
fects and certainly implications for accuracy, stability and the coupling of
vertical and horizontal modes. The numerical solution of atmospheric model
equations based on a discrete analog of the vertical structure equation will
“exhibit” similar numerical accuracy and stability problems. The number
of modes that must be resolved for correct capture of the flow energetics is
considered in [1] where it is noted that some modes have a kinetic energy
cascade similar to the Kolomogorov k−5/3 power law and others similar to
two dimensional turbulence with a k−3 power law. (These conclusions were
reached using very poorly resolved vertical modes. Only nine vertical levels
were used and the choice of the model top was not investigated.)

For numerical approximation, as a rule of thumb, the number of points
used in a discretization depends on the smoothness and behaviour of the
function. For oscillatory functions, like the sine, 5-10 points between zeros
is generally adequate to capture the qualitative behaviour of the function.
A minimal parabolic fit between zeros would require three points. The n-
th eigenfunction of the Sturm-Lioville problem has n zeros in the interval
[5]. Hence if N modes are important in the 3-D baroclinic dynamics, then
roughly 5N points in the vertical discretization are called for. Deciding how
many modes are needed for accuracy is a function of the choices at the top
of the atmosphere boundary condition. As p → 0, the oscillations of the
normal modes increase near the singular boundary, see Figure 3.

This increased oscillation at the top of the atmosphere has lead to the
suggestion that more points be added to resolve the structures using an
unequally spaced mesh [36]. This is counter intuitive since most of the mass
of the atmosphere occurs near the surface. One hopes that the stratospheric
modes do not influence the near surface values very much. Unfortunately, a
look at the shape of the eigenfunctions indicates otherwise. So numerics that
filter these modes explicitly, by damping, or implicitly, by low resolution,
may be important for reasonable results near the surface. Another option is
to increase the order of the vertical discretization using basis functions, eg.
finite elements or even the normal modes themselves, as illustrated in the
Appendix using Laguerre polynomials in a compact vertical discretization.
The vertical distribution of points on the Lorentz grid is also effected by
the choice of coordinates. An isentropic coordinate distriubtion may yield a
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better distribution than a uniform σ such as used in our test example [24].

The choice of the height for a top of the atmosphere lid used to regularize
the singular problem may benefit from physical considerations. In the ap-
pendix A, height and pressure values for the standard atmosphere are given
along with the thermal structure. A value near the tropopause eliminates
many of the oscillatory stratospheric modes. A recent model development
[11] uses a top at 10 km or roughly ptop = 264 hPa. Using a quadrati-
cally stretched grid with nineteen levels, the accuracy of the fifth mode is
already very questionable. A leading atmospheric climate model [6] places
the ptop = 2.9 hPa or a height of 40 km. The interplay between the choice
of the top and the vertical discretization will be studied using the vertical
structure equation with the uniform lvcolumn vertical discretization.

A control volume discretization of (Eq. 20) that follows the distribution
of values on a Lorentz grid assigns Z to the integer index layers, the same
location as horizontal momentum and geopotential. The Lorentz vertical
grid has the pressure at half index locations and pressure must be averaged
to integer index locations. (This averaging is a source of discretization error
and computational modes that may affect stability.) The thermodynamic
parameter γ is located at the integer index layers and values of temperature
and pressure are given by the state of the atmospheric column. Integrating
over a model layer,[ζk−1/2, ζk+1/2],

1

∆pk

∫ pk+1/2

pk−1/2

[

d

dp

(

p

Rγ

dZ

dp

)

+
Z

gH

]

dp

=
1

∆pk

[

p

Rγ

dZ

dp

]p(ζk+1/2
)

p(ζk−1/2
)

+
1

gH
Zk

=
1

∆pk

[(

pk+1/2

Rγk+1/2

)

(Zk+1 − Zk)

(pk+1 − pk)
−

(

pk−1/2

Rγk−1/2

)

(Zk − Zk−1)

(pk − pk−1)

]

+
1

gH
Zk = 0. (23)

In these equations, ∆pk = pk+1/2 − pk−1/2, pk = 1
2 (pk+1/2 + pk−1/2).

The boundary conditions are discretized at the half index surfaces by
substitution into the k = 1 layer and k = K layer equations. So the top
layer equation is

1

∆p1

[(

p3/2

Rγ3/2

)

(Z2 − Z1)

(p2 − p1)
− 0

]

+
1

gH
Z1 = 0. (24)
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The bottom layer equation is

1

∆pK

[

(

−
ps
TsR

Zs

)

−
pK−1/2

RγK−1/2

(ZK − ZK−1)

(pK − pK−1)

]

+
1

gH
ZK = 0. (25)

The static stability parameter is computed at half index levels as

γk+1/2 = −
(Tk + Tk+1)

(θk + θk+1)

(

θk+1 − θk
pk+1 − pk

)

. (26)

The resulting system is AZ = λZ where the eigenvalue λ = −1
gH and

matrix

ak,k−1 =
1

∆pk

pk−1/2

Rγk−1/2∆pk−1/2
, (27)

ak,k = −
1

∆pk

[

pk+1/2

Rγk+1/2∆pk+1/2
+

pk−1/2

Rγk−1/2∆pk−1/2

]

, (28)

ak,k+1 =
1

∆pk

pk+1/2

Rγk+1/2∆pk+1/2
, (29)

An eigenanalysis of the A matrix, using the MATLAB eig function, gen-
erates eigenfunctions and eigenvalues that correspond to the normal modes
and the equivalent depths, H, for each mode. The constant function with a
zero eigenvalue (infinite height), is called the external mode and is in the null
space of A. A MATLAB test program, VSE.m, that solves this eigenprob-
lem uses a sample vertical column corresponding to a reference atmosphere,
Figure 2. The model top, specified by ptop can be varied to explore the
effect of this parameter on the spectrum of the vertical structure operator,
A. The number of vertical layers, K, is the other study parameter. The
dominant modes are plotted in Figure 3 for K = 26 and K = 96. What can
be seen in these solutions is that the modes are not well resolved, indeed,
not converged, in the upper atmosphere with K = 26. Since ptop is small
the modes are highly oscillatory near the top (upper atmosphere) bound-
ary. This would correspond to the singular Strum-Liouville problem with a
continuous spectrum.

The eigensolutions also reveal computational modes associated with the
discretization. Looking at the smallest equivalent heights in Figure 4, it
is clear that one is zero (or at least falls two orders of magnitude below
the others). The vertical structure matrix A for the Lorentz vertical grid
discretization contains one computational mode. This will be true regardless
of the choice of the top and results from assignment of variables to the
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Figure 2: Lorentz Vertical Column representing a reference atmosphere with
ptop = 2.8 hPa.
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Figure 3: Normal modes of the vertical structure equation with ptop =
2.9 hPa and K = 26 and 96. Only the six largest modes (excluding the ex-
ternal mode) , and their equivalent depths are displayed. Equivalent depths
(m) are normalized so that the largest mode has a depth of 10km
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grid and the required averaging that is required in the discretization. The
computational mode associated with the zero equivalent height is plotted in
Figure 5 along with the other nearby modes. It is associated with a surface
value and can be controlled by eliminating this degree of freedom.
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Figure 4: Equivalent depths for ptop = 2.9 hPa and K = 96.

Many other choices of the grid assignment are possible based on differ-
ent formulations and vertical coordinate systems. The optimal choice for
representation of the normal modes is considered in [32]. The Lorentz grid
is found to generate errors in dispersion relations and to be suboptimal in
terms of accuracy.

4.2 Baroclinic Right Hand Sides

With the data and methods available in the @lvgrid and @lvcolumn class
the vertical terms of a baroclinic atmospheric model can be computed. In a
semi-implicit treatment of the equations, such as in [10], the explicit terms
are written on the right hand side of the equation. The method lvterms
returns the right hand sides for the baroclinic equations.

The right hand side (explicit terms) of the momentum equation con-
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tributing to the Rη and Rδ (see [10]), is given by

Rv = F − ζ̇
∂v

∂ζ
+

(

RT
π

p

(

∂p

∂π

))′

∇ζ lnπ. (30)

The right hand sides of the continuity, energy and species equations are
given by

Rπ = −
1

π

∂

∂ζ
(πζ̇), (31)

RT =
Q

Cp
− ζ̇

∂T

∂ζ
(32)

+
κT

p

[

v ·

(

π(
∂p

∂π
)∇ζ lnπ

)

−

∫ ζ

ζtop

v · (π∇ζ lnπ) dζ

]

−

(

κT

p

)′ ∫ p(ζ)

ptop

δdp (33)

Rθ =
Q

Π
− ζ̇

∂θ

∂ζ
, (34)

Rq = S − ζ̇
∂q

∂ζ
. (35)

These right hand side terms can be used in the context of a baroclinic
solution algorithm to produce a three dimensional atmospheric flow simula-
tion. The algorithm demonstrated here is a semi-implicit, semi-lagrangian
spectral algorithm. Though the equations are written quite generally to
include hybrid sigma-pressure coordinates (as in [6]), isentropic or mass
conserving vertical Lagrangian coordinates, the test code BCsigma.m uses
a simple σ-coordinate. We take ζ = p−ptop

p−ps
∈ [0, 1] with uniform divisions.

The spectral solution of the semi-implicit equations for a baroclinic
model follows [10].

5 Conclusion

Baroclinic, three diminsional models with the hydrostatic or non-hydrostatic
assumption, exhibit a tight coupling of vertical and horizontal modes of
motion. Since the vertical modes of the atmosphere are sensitive to the
numerical treatment of the vertical grid, careful choice and study of the
vertical discretization is important to the formulation of baroclinic models.
A set of MATLAB routines for the Lorentz grid in a generalized vertical
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coordinate system has been described that computes the relevant vertical
coupling terms of a baroclinic model. The underlying discretizations and
MATLAB functions are tested with the solution of the vertical structure
equation.
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A The 1976 Standard Atmosphere

Conditions of the 1976 standard atmospheric column are used in this report.
The equations that determine the standard atmosphere are those adopted 15
October 1976 by the United States Committee on Extension to the Standard
Atmosphere (COESA). The equations and parameters used are documented
in a book U.S. Standard Atmosphere, 1976 published by the U.S. Govern-
ment Printing Office, Washington, D.C. A few values (Table 1) and a plot
(Figure 6) are included here for reference.

B Compact Vertical Discretization based on La-

guerre Polynomials

This appendix introduces a high order discretization of the vertical based on
the use of a compact form for the derivatives, interpolations and quadratures
required. We choose the vertical coordinate defined by ζ = − ln p. For this
coordinate, the domain is nominally p ∈ [0, 1] with pressure at 1 atmosphere
at the surface and zero going high above the atmosphere, so ζ ∈ [0,∞) with
ζ = 0 being the surface.

If the vertical grid points are chosen as the zeros of LN (ζ), the Laguerre
polynomial of degree N and the abscissas of the Gauss-Laguerre quadrature
method, then the integral term of interest from the hydrostatic equation is

∫ ζ

0
e−ζTdζ =

∑

ζi≤ζ

wiT (ζi) (36)
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Pressure (hPa) Height (m) Temperature (C) Layer

1000.0 110.88 14.28 Boundary Layer
950.0 540.34 11.49 Troposphere
900.0 988.50 8.57 Troposphere
850.0 1457.30 5.53 Troposphere
800.0 1948.99 2.33 Troposphere
750.0 2466.23 -1.03 Troposphere
700.0 3012.18 -4.58 Troposphere
650.0 3590.69 -8.34 Troposphere
600.0 4206.43 -12.34 Troposphere
550.0 4865.22 -16.62 Troposphere
500.0 5574.44 -21.23 Troposphere
450.0 6343.62 -26.23 Troposphere
400.0 7185.44 -31.71 Troposphere
350.0 8117.27 -37.76 Troposphere
300.0 9163.96 -44.57 Troposphere
250.0 10362.95 -52.36 Troposphere
200.0 11784.05 -56.50 Tropopause
150.0 13608.42 -56.50 Tropopause
100.0 16179.72 -56.50 Tropopause
70.0 18441.62 -56.50 Tropopause
60.0 19419.19 -56.50 Tropopause
50.0 20576.17 -55.92 Stratosphere
20.0 26481.22 -50.02 Stratosphere
10.0 31054.64 -45.45 Stratosphere
5.0 35776.55 -33.93 Stratosphere
2.0 42439.85 -15.27 Stratosphere
1.0 47820.08 -2.50 Stratopause
0.7 50645.75 -2.50 Stratopause
0.6 51866.98 -2.50 Stratopause
0.5 53305.04 -5.11 Mesosphere
0.3 57253.58 -13.01 Mesosphere
0.1 65280.75 -37.62 Mesosphere

Table 1: The pressure, height and temperature of the 1976 Standard Atmo-
sphere. Computed using stdatm76.f

19



−60 −50 −40 −30 −20 −10 0 10 20

10
0

10
1

10
2

10
3

Vertical Temperature Profile Standard Atm

Temperature, (Celsius)

P
re

s
s
u

re
, 

(m
b

)

Figure 6: Standard Atmosphere Temperature Profile

The weights are given by the formula wi = ζi
(N+1)2[LN+1(ζi)]2

. The integral

will have an error term of (N !)2

(2N)!T
(2N)(ξ). But the Gauss-Laguerre points

may not be a good choice for use in the atmosphere. The points in the
troposphere are very few even with high order. For a 15 point rule, which
will integrate a 29th degree polynomial exactly, there would be only 5 points
in the troposphere. The advantage of using the very high order will be lost
with points located too far from the surface. So we will chose the grid points
arbitrarily and develop approximations that are exact with the Laguerre
polynomials. The order of the methods will not have the Gauss quadrature
advantage that obtains a doubling of the accuracy.

By a compact method for the derivative [23, 24] is meant an approxima-
tion of the form

M
∑

j=L

Aijuζ(ζj) =
K
∑

j=J

Biju(ζj). (37)

The matrix A and B will be determined to get an accurate approximation
about the point xi. In terms of a stencil, the formula will use several implicit
derivative points and several function value points. These do not need to be
on the same grid, for example, staggered grids can be used with arbitrary
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locations. The compact procedure works for more than a derivative. We
could use it for interpolation or quadrature, actually, an linear operator.
To make this generalization, write the unknown point values as d and the
known point values as p. The compact approximation seeks matrices A and
B such that Ad − Bp = 0,

(D,P)

(

A

B

)

= 0, (38)

where D and P are Vandermonde matrices for d and p. That is, we will
have an exact approximation for the unknown for functions in a subspace
of the larger space when evaluated at the grid points. The equation for the
method coeffiecients evaluating derivatives (d = uζ , p = u) is











1 ... 1 0 ... 0
d(L0)(ζL) ... d(L0)(ζM ) −L0(ζJ) ... −L0(ζK)

. ... . . ... .
d(LN )(ζL) ... d(LN )(ζM ) −LN(ζJ ) ... −LN(ζK)
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ATi
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i

)
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1
0
.
0











.

(39)
The first row is for normalization of the method coefficients, enforcing a sum
of one.

The A and B can be chosen to give tridiagonal matrices if, for example,
L = i − 1 and M = i + 1. Then the evaluation of unknowns involves a
tridiagonal solve. In particular, d = A−1Bp .
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A

Figure 7: Stencil for Charney-Phillips grid with fourth order compact
method.
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The hydrostatic equation can be approximated directly to solve for Φ
from the vertical temperature profile. In the ζ coordinate system the hy-
drostatic equation is

Φζ = RT (40)

with Φ(0) = Φs. The compact approximation gives

BΦ = RAT. (41)

For the Lorentz grid, both Φ and T are located at the integer levels so
there is no staggering and the compact method is straightforward. For
the Charney-Phillips grid, T is located at half levels while Φ is located at
integer levels. So the Φζ is needed at half levels (see Figure 7). The fourth
order compact method on the Charney-Phillips grid would use 2 points for
A and 3 points for B in order to maintain a tridiagonal solve for Φ. At
the surface boundary, this approximation is still natural with Φ(0) = Φs

imposed. Since the hydrostatic equation is a first order ordinary differential
equation there is no boundary condition at ∞ for the hydrostatic equation.
A finite truncation is still required. The points of evaluation of d(Ln)(ζ)
in the method equation (Eq. 39) are at the half levels. The hydrostatic
matrices Hkl can be formed from the matrices of the compact method using
the relationship Φ = Φs + RB−1AT , so that H = B−1A. In Figure 8,
the geopotential solution is shown and the relative error with respect to a
K = 1152 solution is shown in Figure 9

The value of ptop still acts as a regularization of the singular Sturm-
Lioville problem. Since the standard atmosphere temperature profile is only
specified to a pressure of 0.10 mb, we examine the effect of setting ptop = 0.10
as the most extreme upper boundary. (Extension of the temperature profile
to infinity with a (bounded) value of absolute zero Kelvin, might be appro-
priate but we have not done this.) The accuracy is found to be comparable
even in this case, showing that the numerical solution is insensitive to the
choice of ptop. From this we conclude that the Laguerre polynomials that are
used to construct the difference formulas, lend their asympotitc properties
(bounded solution at infinity) to the computed solution.

Laguerre polynomials can be computed in MATLAB using the program
LaguerrePoly(n) [31].

The vertical structure problem of the atmosphere can also be solved nu-
merically using the compact method and we outline the solution formulation
here. The equation in the ζ-coordinate is

d2Z

dζ2
+
Rγ

gH
e−ζZ = 0 (42)
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Figure 8: Hydrostatic solution for the geopotential using fourth order com-
pact method ptop = 2.8 hPa and K = 26. The standard atmosphere tem-
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9, 18, 36, 72, 144, 288, 576 on a Charney-Phillips grid of equally spaced points
in σ.
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with e−ζZ → 0 as ζ → ∞ and dZ
dζ + γ

Ts
Z = 0 at ζ = 0. The problem

is transfered to the singular S-L problem on a semi-infinite interval, so we
might expect the Laguerre polynomials and the associated weighted inner
product to be of value in the approximation.

The compact method for the second derivative is set up with d = Zζζ .
The generalized eigenvalue problem for the vertical normal modes is

(B + λA)Z = 0, (43)

where the eζ has been absorbed into B. The implementation of the bound-
ary condition at ptop is interesting. The fixed cap, flux boundary condition
implemented for the Lorentz grid, is easily adapted to the Laguerre polyno-
mials using the compact first derivative approximation. Since this is more
restrictive than the bounded at infinity assumption, the interesting question
is how much effect this has and whether another form of the boundary con-
dition (eg. Z = arbitrary polynomial), would influence the normal modes.

The trouble with a spectral method in the vertical was discovered by
Francis[13] and further elaborated in [28]. First, the number of Gauss-
Laguerre points that fall in the physical range of the atmosphere is small
requiring a large number of modes. As these modes are highly oscillatory in
the top of the domain, a time step restriction on the dynamics is imposed
and Francis found from a linear stability analysis that the stable time step
is an order of magnitude smaller than the finite difference time step. Giving
up on spectral accuracy with a set of discrete points not equal to the zeros
of a Laguerre polynomial, but still using Laguerre as the basis functions
for the compact discrete method, results in slow convergence to a solution
as seen with the solution of the geopotential equation. This essentially
rules out the Laguerre polynomial basis in favor of polynomials with more
evenly distributed zeros. However, other polynomial basis may not have the
desirable decay properties required for the singular boundary, i.e. Zζ → 0.

The solution adopted by the ECMWF for their semi-Lagrangian codes
is a cubic finite element on a Charney-Phillips grid. This exploits supercon-
vergence at the node points of the grid resulting in a sixth order scheme in
the vertical [35]. This seems to be a very good solution, and indeed, they
report significant reduction of noise in their simulations and improved fore-
cast skill. With a Lagrangian coordinate, this would be like a moving finite
element method.
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