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Abstract

Edge detection has traditionally been associated with detecting physical space jump
discontinuities in one dimension, e.g. seismic signals, and two dimensions, e.g. digi-
tal images. Hence most of the research on edge detection algorithms is restricted to
these contexts. High dimension edge detection can be of significant importance, how-
ever. For instance, stochastic variants of classical differential equations not only have
variables in space/time dimensions, but additional dimensions are often introduced to
the problem by the nature of the random inputs. The stochastic solutions to such prob-
lems sometimes contain discontinuities in the corresponding random space and a prior
knowledge of jump locations can be very helpful in increasing the accuracy of the final
solution. Traditional edge detection methods typically require uniform grid point distri-
bution. They also often involve the computation of gradients and/or Laplacians, which
can become very complicated to compute as the number of dimensions increases. The
polynomial annihilation edge detection method, on the other hand, is more flexible in
terms of its geometric specifications and is furthermore relatively easy to apply. This
paper discusses the numerical implementation of the polynomial annihilation edge de-
tection method to high dimensional functions that arise when solving stochastic partial
differential equations.

Key Words: stochastic partial differential equations, multivariate edge detection, generalized
polynomial chaos method

1 Introduction

There has been recent growing interest in developing numerical methods for stochastic com-
putations. The purpose is to effectively conduct uncertainty quantification (UQ) for prac-
tical problems. Uncertainty is ubiquitous in engineering problems and can present itself in
mathematical models via “data”, e.g., parameters, initial and boundary conditions, material
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properties, and the like. Due to our inability to conduct accurate measurements, such data
can never be known precisely. The associated uncertainty in the data will inevitably affect
our prediction of the true physics. In order to conduct reliable computation, it is therefore
important to incorporate the uncertainty in the problem from the beginning of the simulation,
as well as to understand and quantify the impacts of the uncertainty on the solution.

The most widely adopted approach for UQ is stochastic modeling. To this end, the un-
certainty in data is modeled as random variables and random processes. Subsequently, the
original deterministic model, for example a system of partial differential equations (PDEs), be-
come a stochastic model, such as a system of stochastic partial differential equations (SPDEs).
One of the most important features of the stochastic model is that the corresponding SPDEs
now reside in a higher dimensional space which includes the original space/time dimensions
and additional random dimensions determined by the nature of the random inputs. It be-
comes imperative to develop efficient multi-dimensional methods so that solving the problem
does not become computationally prohibitive. One of the most widely used methods is based
on generalized polynomial chaos (gPC), [19], which is an extension of the classical polyno-
mial chaos (PC) method pioneered by R. Ghanem in [9]. In gPC, stochastic quantities are
expressed as convergent orthogonal polynomial series in terms of the input random variables.
This closely resembles spectral methods, [10], where fast convergence can be achieved when
the solutions are sufficiently smooth. Since its first systematical introduction, gPC has been
successfully applied to a large variety of stochastic problems. In many problems the stochastic
solutions are smooth in random space and consequently gPC offers highly accurate results.
However, when a stochastic solution contains a discontinuity in its corresponding random
space, Gibbs oscillations can occur, [11, 13], causing the accuracy of the gPC solution to suf-
fer. To circumvent this difficulty, it is necessary to discretize the random space and employ
piecewise continuous polynomials, similar to what is done in classical deterministic numer-
ical analysis. The piecewise continuous gPC approach has been proposed and analyzed in
[3, 13, 17]. Although the discretization is straightforward conceptually, it is numerically chal-
lenging because when the computational domain, i.e., the random space, is discretized into
elements, there is little choice but to use the tensor product rule to construct the elements.
Hence the total number of elements grows exponentially fast as the dimensionality of the ran-
dom space increases. As a result, in practical stochastic computations it is imperative to split
the random space into as few elements as possible unless the random dimensionality is low
(e.g. less than five). It is therefore extremely useful to identify the location of discontinuities
so that one knows exactly where to split the domain into elements.

Based on an extension of the polynomial annihilation edge detection method previously
used for deterministic applications, [1], this paper proposes and analyzes a global polyno-
mial basis numerical procedure for determining jump discontinuities in a gPC multivariate
stochastic solution of a given stochastic simulation. The method further allows the complete
domain classification into smooth sub-regions. Consequently, the random space can be split
into elements that avoid the inclusion of a jump discontinuity, and in turn will generate a
much more efficient piecewise gPC computation. Other traditional edge detection methods,
e.g. [5, 15], most often require (i) uniform grid points and (ii) the construction of gradients
and Laplacians. As such they are less flexible and more costly when applied to higher dimen-
sional problems. Finally we note that the polynomial annihilation edge detection method is
high order, making it easier to detect jump discontinuities in highly variable functions using

2



fewer grid point values.
This paper is organized as follows: In Section 2 we establish the general framework of

the gPC procedure for solving the stochastic partial differential equations. Section 3 reviews
the polynomial annihilation edge detection method, which is extended in Section 4 so that
it can be applied to stochastic simulation results in the form of gPC expansions. In Section
5 we propose an adaptive algorithm to completely classify the domain based on the regions
of smoothness of the function. Section 6 demonstrates our techniques on some numerical
experiments, and we conclude with ideas for future investigations in Section 7. The terms
‘edge’ and ‘jump discontinuity’ are used interchangeably throughout.

2 Solution of Stochastic Differential Equations

This section briefly reviews the solution technique for stochastic differential equations with a
focus on one of the most widely adopted non-sampling approaches — generalized polynomial
chaos (gPC), [19].

2.1 Governing Equation

For notational convenience, the exposition here is restricted to boundary value problems. The
framework is nevertheless applicable to general time dependent problems.

Let D ⊂ R
ℓ, ℓ = 1, 2, 3, be a fixed physical domain with boundary ∂D, and x =

(x(1), . . . , x(ℓ)) be the coordinates. We consider a partial differential equation (PDE)

L (x, u; y) = 0 in D,
B(x, u; y) = 0 on ∂D,

(1)

where L is a differential operator and B is a boundary operator. The operator B can take
various forms on different boundary segments, e.g., B , I on Dirichlet segments where I is the
identity operator, and B , n·∇ on Neumann segments whose outward unit normal vector is n.
Here y = (y(1), . . . , y(d)) : Ω → R

d, d ≥ 1, are random variables defined on a proper probability
space (Ω,A,P) with event space Ω, σ-algebra A, and probability measure P, that characterize
the random inputs from various sources, e.g., boundary condition, system parameters, etc. We
assume that these random variables (y(1), . . . , y(d)) are mutually independent of each other.
In other words, any other possible additional random parameters, if they exist, are functions
of y.

Let us assume for all i = 1, . . . , d, the random variables y(i) are continuous with probability
density functions (PDF) ρ(i) : Γ(i) → R

+, where Γ(i) , y(i)(Ω) is the image of y(i). Then the
random vector y = (y(1), · · · , y(d)) has support and joint PDF

Γ ,

d
∏

i=1

Γ(i) ⊂ R
d, ρ(y) =

d
∏

i=1

ρ(i)(y(i)), (2)

respectively. This allows us to construct numerical formulations in the finite dimensional
(d-dimensional) random space Γ in replacement of Ω. Subsequently the governing equation
(1) should be valid for all y ∈ Γ, and we seek a solution u(x, y) : D̄ × Γ → R such that (1)
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is satisfied for all x ∈ D̄ and y ∈ Γ. Although the methodology presented here applies to
random variables with unbounded support, we will restrict our exposition to bounded support
for notational convenience. Upon proper scaling, the finite dimensional probability space Γ is
a hypercube [−1, 1]d.

In the following we will adopt the multi-index notation: Let i = (i1, . . . , id) ∈ N
d
0 be a

multi-index, with |i| =
∑d

k=1 ik, and i = j iff. ik = jk, ∀k = 1, . . . , d. We also define an index
set

JN , {i ∈ N
d
0 : |i| ≤ N} (3)

for a given integer N ≥ 0.

2.2 Generalized Polynomial Chaos

An N th-order generalized polynomial chaos (gPC) expansion to the solution of (1) takes the
form

uN(x, y) =
∑

i∈JN

ûi(x)Φi(y), ∀x ∈ D, (4)

where the expansion coefficients

ûi(x) =

∫

u(x, y)Φi(y)ρ(y)dy = E[u(x, y)Φi(y)], i ∈ JN , (5)

and Φi(y) =
∏d

k=1 φik(y
(k)) are the polynomial basis functions. Here φik(y

(k)) are the ik-th
order orthogonal polynomials in the y(k) dimension satisfying

Ek

[

φm(y(k))Φn(y(k))
]

,

∫

φm(y(k))φn(y
(k))ρ(k)(y(k))dy(k) = δmn, 0 ≤ m, n ≤ N, (6)

where δmn is the Kronecker delta function and the polynomials are normalized. Therefore
{Φi(y)}i∈JN

are d-variate orthogonal polynomials of total degree up to N constructed as the
tensor product of the one dimensional polynomials in each y(k), k = 1, . . . , d, direction. They
are orthonormal so that

E[Φi(y)Φj(y)] ,

∫

Φi(y)Φj(y)ρ(y)dy = δij, ∀i, j ∈ JN , (7)

where δij =
∏d

k=1 δikjk
.

From an implementation point of view, it is convenient to construct a numbering scheme
so that all polynomial bases are indexed with only one index. The gPC expansion, (4), can
then be written as

uN(x, y) =
K

∑

k=1

ûk(x)Φk(y), (8)

where each index k corresponds to a unique sequence k = (k1, . . . , kd) such that

Φk(y) = φk1(y
(1)) · · ·φkd

(y(d)), k1 + · · ·+ kd ≤ N, (9)
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and the orthogonality relation, (7), can be written as

E[Φj(y)Φk(y)] ,

∫

Φj(y)Φk(y)ρ(y)dy = δjk, ∀1 ≤ j, k ≤ K, (10)

where K is the total number of basis functions

K = dim
(

Πd
N

)

=

(

N + d

d

)

. (11)

Here Πd
N denotes the linear space of d-variate polynomials of degree up to N . Similar one-to-

one correspondence exists between the generalized Fourier coefficients {ûk}
K
k=1 and {ûk}

N
|k|=0.

Classical approximation theory guarantees that this is the best approximation in Πd
N , i.e., for

any x ∈ D and u ∈ L2
ρ(Γ),

‖u − uN‖L2
ρ(Γ) = inf

Ψ∈Πd
N

‖u − Ψ‖L2
ρ(Γ). (12)

2.3 Stochastic Galerkin and Collocation Methods

In practice, the expansion coefficients {ûk}
K
k=1 in (8) are not available. Two often used ap-

proaches to numerically resolve them are the stochastic Galerkin (SG) method and stochastic
collocation (SC) method.

The stochastic Galerkin approach seeks an approximate gPC solution in the form of (8)
as

vN(x, y) =

K
∑

k=1

v̂k(x)Φk(y), (13)

where K is given by (11). The expansion coefficients {v̂k} are obtained by satisfying (1) in
the weak form; that is for all k = 1, . . . , K,

∫

L(x, vN ; y)Φk(y)ρ(y)dy = 0, in D,
∫

B(x, vN ; y)Φk(y)ρ(y)dy = 0, on ∂D.
(14)

The resulting equations are a set of (usually coupled) deterministic PDEs for {v̂k}, and stan-
dard numerical techniques can be applied.

Another approach is to employ a pseudo-spectral stochastic collocation approach, [18]. We
again seek an approximate solution in the form of gPC expansion, similar to (8), i.e., for any
x ∈ D,

wN(x, y) =

K
∑

k=1

ŵk(x)Φk(y), (15)

where the expansion coefficients are determined as

ŵk(x) =

Q
∑

j=1

u(x, yj)Φk(yj)αj, k = 1, . . . , K. (16)
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Here {yj, αj}
Q
j=1 are a set of nodes and weights, and u(x, yj) is the deterministic solution of

(1) with fixed yj. The nodes and weights should be chosen from a cubature rule such that

ŵk(x) ≈

∫

u(x, y)Φk(y)ρ(y)dy = ûk(x) (17)

with sufficient accuracy. (Here the last equality follows from (5).) Subsequently (15) becomes
an approximation of the exact gPC expansion, (4). The difference between the two is caused
by the integration error from (17) and is termed as “aliasing error” in [18], following the
similar terminology from the classical deterministic spectral methods. (cf. [6, 10]).

2.4 Summary of gPC Based Methods

In summary, all gPC based methods seek to approximate the stochastic solution of (1) in the
form of (4), where the expansion coefficients are obtained approximately via either a Galerkin
approach, (13), or a collocation approach, (15). Depending on the probability distribution
of the random variables y, different orthogonal polynomials can be employed for better per-
formance, [19]. Whenever the solution is relatively smooth in the random space Γ, the gPC
methods based on global orthogonal polynomials exhibits fast convergence and are highly
effective.

However, when the stochastic solution contains discontinuities in the random space Γ,
the convergence of gPC methods deteriorates, [11, 13]. To circumvent this difficulty, it is
important to use a set of piecewise smooth gPC basis functions, (cf. [3, 13, 17]), so that the
undesirable effects caused by the discontinuities are locally confined.

While the idea of using piecewise basis functions is simple, as it is a straightforward
extension of the classical numerical methods such as the finite element method, a significant
difficulty arises in practice for high dimensional random spaces. Whenever the random space
is decomposed, the usual approach is to split each direction into elements and construct the
elements via tensor product, [3, 13, 17]. This will incur a prohibitively large number of
elements for high dimensional random space. Furthermore, since the unknown gPC expansion
coefficients must be solved inside each element, the ensuing computational burden can be
tremendously high. If, however, the location of the jump discontinuities (if there are any)
can be identified from a given gPC simulation result, then the entire random space can be
decomposed into as few as possible elements. The following sections are devoted to a strategy
based on an extension of the deterministic polynomial annihilation edge detection methodology
to enable such a decomposition.

3 Polynomial Annihilation Edge Detection

Let us first consider a piecewise continuous function f(y) : [−1, 1] → R in one dimensional
(random) space known only on the set of discrete points 1

S = {y1, y2, ..., yQ̄(1)} ⊂ [−1, 1]. (18)

1There are Q̄(1) reconstruction points in one dimension. We note, however, that in higher dimensions, Q̄(d)

may not be related to the total number of quadrature points in (16), Q.
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Assume that f has well defined one sided limits, f(y±), at any point y in the domain. We
denote by J the set of the points of discontinuity of f , that is, J = {ξ : −1 < ξ < 1}, where
ξ is a jump discontinuity point in f . The local jump function is defined as

[f ](y) = f
(

y+
)

− f
(

y−
)

=

{

0, if y 6= ξ,
[f ] (ξ), if y = ξ.

(19)

Hence if f is continuous at y, the jump function [f ](y) = 0; if y is a point of discontinuity of
f , then [f ](y) is equal to the jump value there.

The polynomial annihilation edge detection method, introduced in [1], seeks an approx-
imation to [f ](y) that converges rapidly to zero away from the jump discontinuities. It can
be described as follows: Assume y is a point inside the domain, i.e., y ∈ (−1, 1). For a given
positive integer m < Q̄(1) − 1, we choose a local stencil

Sy = {yj|yj ∈ S} = {y0, ..., ym} (20)

of the nearest m + 1 grid points around y. Let {pi}
m
i=0 be a basis for Π1

m, the univariate
polynomial space of degree up to m. The polynomial annihilation edge detection method is
given by

Lmf(y) =
1

qm(y)

∑

yj∈Sy

cj(y)f(yj), (21)

where the coefficients cj(y) are chosen to annihilate polynomials of degree up to m − 1 and
are determined by solving the linear system

∑

yj∈Sy

cj(y)pi(yj) = p
(m)
i (y), ∀i = 0, · · · , m. (22)

Here p
(m)
i (y) denotes the mth derivative of pi(y). Notice that the solution to (22) exists and is

unique. Next we define

S+
y = {yj ∈ Sy|yj ≥ y} and S−

y = Sy \ S+
y . (23)

The normalization factor in (21), given by

qm(y) =
∑

yj∈S+
y

cj(y), (24)

ensures that Lmf(y) has correct value at the jump discontinuities. Note that (24) is non-zero
by design. In [1] it was shown that if the maximum separation h(y) is defined as

h(y) = max{|yi − yi−1| : yi−1, yi ∈ Sy}, (25)

then (21) satisfies the following property:

Lmf(y) =

{

[f ](ξ) + O(h(y)), if yj−1 ≤ ξ, y ≤ yj,
O(hmin(m,k)(y)), if f ∈ Ck(Iy), k > 0.

(26)
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Here Iy is the smallest closed interval such that Sy ⊂ Iy. Hence the polynomial annihila-
tion edge detection method converges to [f ](y) with a rate depending on m and the local
smoothness of f .

We pause to note two important distinctions between the polynomial annihilation edge
detection method, (21), and more traditional edge detection methods, [5, 15]. The polynomial
annihilation edge detection method is a high order reconstruction of the jump function, [f ](y),
defined in (19). Other techniques more commonly used in image processing are edge detectors.
Specifically, they attempt to identify the set of edges J with regard to certain thresholds
that are usually determined from some underlying assumptions about the particular image
(typically digital) and outside influences (e.g., noise). The high order design of (21) is well
suited when the underlying structure of the piecewise smooth function has some variability,
which is often the case in the gPC solution. Also, fewer points are needed in each direction
to resolve the corresponding jump function, which can dramatically reduce computational
costs. The second critical advantage of the polynomial annihilation edge detection method
over traditional techniques is that it does not require uniform point distribution. This is
particularly useful when combined with the gPC collocation method, since using uniformly
distributed points is almost never attempted.

The following example demonstrates the performance of the polynomial annihilation edge
detection method:

Example 3.1 Consider the function on [−2, 6π]

f(y) =







ey, y < 0,
−e−y, 0 ≤ y < 3π

2
,

−1.5 sin(y), 3π
2
≤ y ≤ 6π.

(27)

Example 3.1 has jump discontinuities at y = 0 and y = 3π/2 and is continuous everywhere
else in the domain. The results of applying (21) to randomly distributed grid point data
for various orders of m are shown in Fig. 1(b)-(e). The wide gaps in the data near y = 9
and y = 12, displayed in Fig. 1(a), can be easily mistaken for jump discontinuities in the
underlying function by a low order edge detector. On the other hand, the higher order
polynomial annihilation edge detection method is able to distinguish gaps in data from true
discontinuities.

Fig. 1 demonstrates the importance of the order m in (21). Small order m might cause
misidentification of a steep gradient as an edge (due to low resolution). On the other hand,
the inherent nature of high order polynomial approximation causes oscillations to occur in the
vicinity of the discontinuities when m is large. To prevent inaccuracies due to either reason,
we apply the minmod function, which is typically used to reduce oscillations in flux limiters
when solving numerical conservation laws.2 Specifically, we apply

MM(Lmf(y)) =







minm∈M Lmf(y), if Lmf(y) > 0, ∀m ∈ M,
maxm∈M Lmf(y), if Lmf(y) < 0, ∀m ∈ M,
0, otherwise,

(28)

2The minmod technique was introduced in the context of edge detection in [4, 8] and was used in [1] to
enhance the performance of the polynomial annihilation method.
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Figure 1: Example 3.1 (a) underlying function on N = 128 randomly distributed grid points;
(b)-(e) Jump function approximation of Example 3.1 using various orders m; (f) Minmod
results, (28).

where M ⊂ N of positive integers. As shown in Fig. 1(f) for M = {1, 2, 3, 4, 5}, the minmod
function controls the oscillations while still maintaining high order of convergence away from
the jump discontinuities. It furthermore reduces the need for outside thresholding.

Finally, we would like to point out the the polynomial annihilation edge detection method
was originally developed in [1] to determine multi-dimensional jump discontinuities from ran-
domly distributed grid points. However, the gPC collocation method uses structured grids
in each dimension (typically Gaussian). Hence to simplify programming and increase com-
putational efficiency, we choose to use a dimension by dimension approach. As an additional
advantage, the method easily lends itself to parallel processing.

4 Determining Jump Discontinuities in a GPC Stochas-

tic Solution

The gPC solution to a stochastic partial differential equation is in the form of a polynomial
series, (4), which is known either via its expansion coefficients, obtained by the stochastic
Galerkin (13) or collocation (15) method, or via the stochastic collocation solution at the
given nodes in the corresponding (multivariate) random space. The polynomial annihilation
edge detection method is well suited to either situation.
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4.1 Formulation in One Dimension

Let us first consider the one dimensional random space case, i.e., where f(y) : [−1, 1] → R is
a piecewise smooth function and {φk(y)}N

k=0 are the gPC basis functions of degree up to N .
In this case, the total number of basis functions in (11) is K = N + 1. For example, when
y has a beta distribution in [−1, 1], the corresponding gPC basis functions are the Jacobi
polynomials, see [19]. Consider a truncated gPC approximation for f(y) :

fN (y) =

N
∑

k=0

f̂kφk(y), (29)

where f̂k is obtained either via stochastic Galerkin or collocation, (13) or (15) respectively.
We assume that the number of coefficients in the stochastic Galerkin method or the num-
ber of quadrature points in the stochastic collocation procedure is sufficient to preserve any
discontinuities in f(y). The jump function [f ](y) can be approximated via (21) using (29) as

Lmf(y) ≈ LmfN(y) =
1

qm(y)

∑

yj∈Sy

cj(y)fN(yj) =
1

qm(y)

∑

yj∈Sy

cj(y)

N
∑

k=0

f̂kφk(yj), (30)

where the coefficients cj(y) are determined from (22) and Sy is the stencil defined in (20) with
m < N − 1. For simplicity, we assume in one dimension that the number of reconstruction
points is the same as the degree of the polynomial expansion, that is, Q̄(1) = N in (18).

Another possible approach is to approximate the jump function by directly using the gPC
expansion coefficients. This is particularly useful when the gPC solution is obtained by the
stochastic Galerkin method. To this end, we first note that the system that determines the
annihilation coefficients, (22), must hold for any polynomials of degree up to m. By making
the annihilation polynomials the same as the gPC basis polynomials, pi(y) = φi(y), (22)
becomes

∑

yj∈Sy

cj(y)φi(yj) = φ
(m)
i (y), i = 0, · · · , m. (31)

where again φ
(m)
i (y) denotes the mth derivative of φi(y). Maintaining such consistency between

the basis corresponding to the given coefficients and the basis to be annihilated helps in
avoiding Gibbs oscillations inherent upon function reconstruction, (29). We now rearrange
(30) so that

LmfN(y) =
1

qm(y)

N
∑

k=0

f̂k

∑

yj∈Sy

cj(y)φk(yj). (32)

Further, since the first m − 1 polynomials are annihilated by (31), (32) reduces to

LmfN(y) =
1

qm(y)

N
∑

k=m

f̂k

∑

yj∈Sy

cj(y)φk(yj). (33)

In this way, an actual reconstruction of the function is completely avoided, yielding both
a savings in computational costs as well as a potential improvement in accuracy since no
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interpolatory error is introduced. Note that (33) is quite intuitive as the smoothness of a
function is determined by its high end coefficients in a spectral partial sum.

To demonstrate use of (33), we consider the following example:

Example 4.1 Let f(y) : [−1, 1] → R be defined as

f(y) =

{

ey, y < 0,
−e−y, y ≥ 0.

(34)

Example 4.1 has a jump discontinuity at y = 0. Figures 2(b)-(e) illustrate the results using
(33) for orders m = 2 through m = 5. Figure 2(f) displays the jump function approximation
after the minmod algorithm, (28), is applied for M = {1, 2, 3, 4, 5}.
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Figure 2: Example 4.1. (a) underlying function on N = 64 Legendre Gauss points; (b)-(e)
Jump function approximation using various orders m; (f) Minmod results, (28), for M =
{1, 2, 3, 4, 5}.

4.2 Extension to Higher Dimensions

Suppose now that f(y) : [−1, 1]d → R, d > 1, is a piecewise smooth function with correspond-
ing N th-order gPC approximation

fN (y) =
∑

i∈JN

f̂iΦi(y). (35)
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Here the index set JN is defined in (3) and the expansion coefficients f̂i are obtained either
via a stochastic Galerkin or a stochastic collocation method.

As stated previously, it is possible to perform edge detection on the function data at any
given values fN(y). However, the effects of high dimensional interpolation errors are unclear
on the polynomial annihilation edge detection method. Further, as described in Section 4.1,
we can take advantage of the formulation in (35) and apply the polynomial annihilation edge
detection method directly on the coefficients in each dimension. This allows us to avoid
interpolatory errors while also improving the overall computational efficiency.

Let b = (b(1), . . . , b(d)) be a fixed coordinate in [−1, 1]d and

y[ℓ](b) = (b(1), . . . , b(ℓ−1), y(ℓ), b(ℓ+1), . . . , b(d)) (36)

be a one dimensional coordinate in [−1, 1]d where all but the ℓth-dimension are fixed by the
given coordinate b. Then (35) becomes

fN(y[ℓ](b)) =
∑

i∈JN

f̂iΦi(y
[ℓ](b)). (37)

The polynomial annihilation edge detection method, (21), in the y(ℓ) direction is then

LmfN(y(ℓ)) =
1

qm(y(ℓ))

∑

y
[ℓ]
j (b)∈S[ℓ](b)

cj(y
(ℓ))fN (y

[ℓ]
j (b))

=
1

qm(y(ℓ))

∑

y
[ℓ]
j

(b)∈S[ℓ](b)

cj(y
(ℓ))

∑

i∈JN

f̂iΦi(y
[ℓ]
j (b)) (38)

where S [ℓ](b) consists of the closest m + 1 points in the y(ℓ) direction around y[ℓ](b),

S [ℓ](b) = {y
[ℓ]
0 (b), · · · , y[ℓ]

m (b)}. (39)

The coefficients cj(y
(ℓ)) are obtained by annihilating one dimensional polynomials of degree

up to m − 1 in the ℓth direction, specifically, by solving the linear system
∑

y
[ℓ]
j

(b)∈S[ℓ](b)

cj(y
(ℓ))φkℓ

(y
[ℓ)]
j (b)) = φ

(m)
kℓ

(y(l)), kℓ = 0, · · · , m, (40)

where φ
(m)
kℓ

(y(l)) denotes the mth derivative of the polynomial φkℓ
(y(l)). Rearranging (38)

therefore yields

LmfN (y(ℓ)) =
1

qm(y(ℓ))

∑

i∈J
(ℓ)
m

f̂i

∑

y
(ℓ)
j ∈S[ℓ](b)

cj(y
(ℓ))Φi(y

[ℓ]
j (b)), (41)

where
J (ℓ)

m = {i ∈ N
d
0 : i ∈ JN and iℓ ≥ m} (42)

is an index set obtained by removing the ℓth multi-index components less than m from the
index set JN . Hence we can save computational costs and reduce potential interpolation error
by avoiding explicit function reconstruction. Numerical examples are provided in Section 6.
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5 Domain Classification

Based on the techniques developed in Section 4, we can now identify the grid cells in which the
jump discontinuities lie in each dimension, given either gPC expansion coefficients, (41), or the
stochastic solution at the collocation nodes, (38). Here we demonstrate how the polynomial
annihilation edge detection method can be used to completely classify the computational
domain in terms of its continuous sub-domains. As explained in the introduction, this will
enable more computational efficiency in any subsequent simulation.

5.1 General Domain Classification

For ease of presentation, we explain our domain classification algorithm on a two dimensional
domain that has only two smooth sub-domains. The algorithm can be extended to multi-
ple sub-domains and is limited only by the resolution of the grid. Figure 3 shows a jump
function on part of a bounded two dimensional domain, [−1, 1] × [−1, 1]. The jump func-
tion approximation, (41), is followed by the minmod algorithm, (28), and is reconstructed on
Q̄(1) × Q̄(2) points. For simplicity, and without loss of generality, we will from now on assume
that Q̄(1) = Q̄(2) = · · · = Q̄(d) = Q̄ represent both the number of reconstruction points and the
number of quadrature points in each dimension. The jump function in Figure 3 runs across
the domain, dividing it into two mutually exclusive regions, which we identify as belonging to
either Class 1 or Class 2. Each point in the domain is tagged with its respective class value,
1 or 2. Our objective is to build an algorithm that automates this domain classification.
We note that since the edge detection method is applied dimension by dimension, the jump
discontinuity values themselves are of correspondingly different signs and magnitudes. This
bears no consequence on the domain classification, however.

We assume that the problem is well resolved so that the jump discontinuity lies in the
interior of the grid and each region is well connected. Initially, all the points in the domain

Figure 3: A jump function running through a two dimensional domain.

are listed as unclassified with a class value equal to zero. Broadly speaking, as we move on
with the algorithm, each point gets identified as belonging to either Class 1 with a class value
of 1, or Class 2 with a class value of 2. Let us begin with the situation where no point has
been classified: We pick a first point from the list of all unclassified points, say the point A in

13



Figure 3, and assign it a class value 1. We consider all the points to the right of A, i.e., the
points along the straight line Āp4, consisting of the group of points {p1, p2, p3, p4}. Clearly
there are no edges anywhere along this line. Hence all of the points are classified as Class 1
points, and each point is assigned a class value of 1. Next we consider the group of points
along the straight line Āq4, i.e., the group {q1, q2, q3, q4}. Once again every point this group
gets classified as Class 1 points. Nine of a total of twenty five points have been classified
thus far. The algorithm proceeds by acting on each one of these new eight points in a similar
manner as for the point A. For instance, considering the vertical direction of the point p1

would determine that points (A, p2, p3, p4, r1) all belong to the first class. Naturally there will
be points that are classified more than once, but they will be classified to the same class.
Therefore this algorithm needs only be concerned with the first classification.

The process continues until all the points in Class 1 have been covered; this is marked by
the fact our search stops yielding new points that have not already been classified. At this
juncture, we start looking for the next connected region - Class 2. The first point in the set
of yet unclassified points (class value 0) is marked as belonging to Class 2 by assigning class
value 2 to it. The same search procedure is followed as for Class 1 and all the points belonging
to Class 2 are collected. After Class 2 has also been exhausted, we check to see if there are
any more unclassified points. If there are, we define Class 3 with class value 3 and continue
the same procedure. If there no points left with class value 0 (as will be for the case exhibited
in Figure 3), it means all the grid points in the domain have been classified and our domain
classification is complete.

The domain classification described here and the adaptive domain classification described
in the next section are both by design favorable to parallel processing. High performance
computing would therefore allow large scale problems to be analyzed efficiently.

5.2 Adaptive Domain Classification

Refining the entire multi-dimensional random space for more accurate edge detection and
improved domain classification is unrealistic. However, any cell found to contain a jump dis-
continuity can be further refined to subsequently produce a new set of cells from which we
can again determine jump discontinuities and classify the (sub-)domain into smooth regions.3

If each refinement increases the resolution by Q̄d, it is possible to build an adaptive procedure
that obtains very high accuracy both in locating the jump discontinuities and in classifying
the domain after only a few iterations. The following algorithm describes how the gPC and
polynomial annihilation methods can be used to characterize the solution space of the gov-
erning equations up to domain accuracy, as determined by the maximum separation distance
given in (25), at each level up to an arbitrary number of iterations, µ ∈ N. In some sense,
our adaptive domain classification can be viewed as an h− p adaptive scheme, where h is the
maximum separation and p represents the order of the polynomial annihilation edge detection
method. All p refinements are pre-determined by the underlying resolution.

Algorithm 5.1 (Adaptive Domain Classification) Consider the initial domain, the hyper-
cube [−1, 1]d. Specify the maximum number of iterations, µ, the number of reconstruction

3We recall that the polynomial annihilation edge detection method locates jump discontinuities to within
a single cell.
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(quadrature) points in each direction for the stochastic collocation gPC method, Q̄, and the
maximum order of the polynomial edge detection method, m, where m < Q̄ − 1.

initialize the only identified hyper-cube as the whole domain, [−1, 1]d.

for i = 1, · · · , µ

for each identified hyper-cube

1. Apply the stochastic collocation gPC method with Q̄ quadrature (reconstruction)
points in each direction.

2. Determine the cells, each comprised of 2d points, containing jump discontinu-
ities using the polynomial annihilation edge detection, (42), combined with the
minmod algorithm, (28), on the gPC approximation, (35).

3. Classify the domain as described in Section 5.1.

4. Element cells needing further refinement are identified as those in which not
all of the 2d points have the same class value. After these cells are refined
using Q̄d points, Steps 1 through 3 are repeated. Note that the classification of
the 2d points making up the (coarser) cell is passed to any subsequent domain
classification.

end

end

(a) (b)

Figure 4: (a) Initial set-up for a two dimensional problem using Q̄ = 4 uniform quadrature
points in each direction. The jump discontinuity splits the domain into two parts. (b) Initial
domain classification results.

Figures 4 and 5 provide a schematic for Algorithm 5.1 for a simple two dimensional ex-
ample. Figure 4(a) displays the initial set-up where there are Q̄ = 4 uniform quadrature
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points in each direction. In this example, the initial one dimensional maximum separation
distance in (25) is (constant) h1(y) = h1 = 2

Q̄−1
, and each subsequent level of refinement is

hi = 2
(Q̄−1)i , i = 1, · · · , µ.4 Suppose that the gPC solution and subsequent processing by the

edge detection method produces a line discontinuity as shown in Figure 4(a) (Steps 1 and 2 in
Algorithm 5.1.) The initial domain classification (Step 3) is illustrated in Figure 4(b), where
it is apparent that when a cell contains a discontinuity, not all of its 2d = 4 points will have
the same class value. Such cells are identified as needing further refinement (Step 4) and are
depicted in Figure 5(a).

(a) (b)

Figure 5: (a) The dotted circles contain cells that require further refinement (Step 4 of Al-
gorithm 5.1). (b) Cell refinement using Q̄ = 4 uniform quadrature points in each direction.
Note that the coarse grid point classification is passed on to the refined grid.

At this stage the first iteration of Algorithm 5.1 is completed. The convergence of the
polynomial annihilation edge detection method, (26), suggests that any cell not identified as
needing further refinement has a jump function value of order O(hm

1 ).5 In general, the accu-
racy of Algorithm 5.1 in classifying smooth regions at each level of refinement depends upon
the maximum separation distance of the particular quadrature scheme chosen, the specified
order of the polynomial annihilation edge detection method, m, and the maximum number of
iterations allowed, µ.

As demonstrated in Figure 5(b), the algorithm may begin again by refining the five cells
containing discontinuities. All previous coarse grid point domain classifications are passed on
to the finer grid. Repeating Steps 1 through 3 will further isolate the jump discontinuity line
to cells that have dimensional length h2 = 2

(Q̄−1)2
. Algorithm 5.1 is iterated until either no

4The uniform points are for ease of presentation only. Typically the gPC solution would use a Gaussian
type distribution. We also adopt the one dimensional notation for the maximum separation distance h(y) =
h(y[ℓ](b)) in (36) since all points are uniformly distributed.

5This will be worse as the jump discontinuity is approached, [1, 2]. The approximation also assumes that
f ∈ Cm(Ω) in smooth regions.
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new cells needing refinement are identified or the maximum number of allowable iterations,
µ, has expired. The algorithm produces various cells which are hyper-cube elements with
dimensional lengths of hi = 2

(Q̄−1)i , i = 1, . . . , µ. Each of these hyper-cubes will either have an

accurate gPC expansion, or will be identified as having a non-smooth domain. Any hyper-cube
that has a non-smooth domain will have a (general) dimensional length hµ(y). In this sense
we can say that the domain can be resolved by this algorithm up to an arbitrary accuracy,
hµ(y).

6 Numerical Examples

6.1 Domain Decomposition

The following example demonstrates use of the adaptive domain classification, Algorithm 5.1:

Example 6.1 Let f(y(1), y(2)) : Ω −→ R, Ω = [−1, 1] × [−1, 1] be defined as

f(y) =

{

−1, if y(1) < y(2),
1, else.

(43)

Example 6.1 is continuous everywhere in the domain except along the line y(1) + y(2) = 0.
Figure 6 shows the results after applying Algorithm 5.1. In this example we used Q̄ = 5
Legendre Gauss Lobatto collocation points, defined as {(y(1), y(2)) : y(1), y(2) = ±1,±1

2
, 0}.

We also chose m = 2 and µ = 3. Note that the density of elements increases near the
jump discontinuity line to provide increased accuracy where needed, while maintaining a
sparse representation in smooth regions. The smallest elements have length governed by the
maximum separation distance of the Legendre Gauss Lobatto quadrature points.

6.2 Multidimensional Application

Now we consider a stochastic differential-algebraic system of equations

du

dt
=

α1

1 + vβ
− u,

dv

dt
=

α2

1 + wγ
− v,

w =
u

(1 + [IPTG]/K)η , (44)

where α1, α2, β, γ, η, and K are parameters and [IPTG] is the system input. This model
is for a genetic toggle switch in Escherichia coli, [7]. The parameters p = (p1, . . . , p6) =
(α1, α2, β, γ, η, K) are modeled as random variables in the form of p = 〈p〉(1 + σy), where
〈p〉 = (156.25, 15.6, 2.5, 1, 2.0015, 2.9618× 10−5) are the mean values and y = (y(1), . . . , y(6))
are random variables uniformly distributed in [−1, 1]6.

The system will reach steady state, which exhibits a switch property, i.e., “on” and “off”,
depending on the intensity of the input [IPTG]. Stochastic simulation of the system was
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Figure 6: Algorithm 5.1 applied to Example 6.1 on the Legendre Gauss Lobatto grid.

carried out in [18] by the stochastic collocation method. The solution v in ((44)), termed as
the “Normalized GFP expression” of simulation and experimental measurement, is displayed
as error bars in Figure 7. We observe good agreement with the experimental measurements.
(Details of the computation can be found in [18].)

The switch behavior suggests that the solution, e.g., v, depends on the parameters in a
non-smooth manner. However, it is not clear either from the physics or the mathematical
point of view which parameters are associated with the jump behavior. Since it is known that
variations in the parameters β and γ do not effect the switching property we carry out the
multi-dimensional edge detection method for v(y), y ∈ [−1, 1]4, in d = 4 dimensional space to
determine the location of the jump.

The results of the adaptive domain classification for the gPC solution for the stochastic
differential-algebraic system, (44), is shown in Figure 8(a), Figure 8(c), and Figure 8(e) for the
entire range of α1, α2, η, where K = 2.9618×10−5+{−σ, 0, σ}. Upon inspection, the adaptive
domain classification indicates that the edge between the two classes can be approximated by
a hyperplane. Support Vector Machines (SVM) provide powerful classification paradigms
developed over the last decade in machine learning theory that operate by classifying the
binary data that separate the hyperplane, or decision surface, which maximizes the margin
between the two classes in the training data, [16]. Using the results of the adaptive domain
classification as the training data for a linear SVM, the hyper-plane which maximizes the
margin between the two identified classes is

f(α1, α2, η, K) = −0.1188α1 + 1.5849α2 + 18.5336η − 8.7464 × 105K − 18.49. (45)

18



−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2

0

0.2

0.4

0.6

0.8

1

log10(IPTG)

N
or

m
al

iz
ed

 G
F

P
 e

xp
re

ss
io

n

Figure 7: Stochastic steady-state solution of v in (44). The light (red) error bars centered
around the open circles display the numerical results determined by the gPC. The dark (blue)
error bars centered around the dots depict the corresponding experimental measurements.

This hyperplane, although not a complete characterization of the multi-dimensional edge,
provides a simple rule to determine the state of the genetic toggle switch model given in (44).
Specifically, if a given set of parameters satisfy f(α1, α2, η, K) > 0, then these parameters lie
in the domain where the steady-state solution is “on”. Conversely, if a given set of parame-
ters yield f(α1, α2, η, K) < 0, then these parameters lie in the domain where the steady-state
solution is “off”. We note that (45) is a crude approximation of the edge that yields a rela-
tively accurate characterization of (44). In fact, comparison of the classification given by (45)
with the steady state solution of (44) for a thousand randomly generated realization of the
parameters α1, α2, η and K produces an agreement rate of 99.1%. Our experiments generated
steady state solutions .2786 < vsteady < 12.7095. Hence we chose vsteady > 6.4941 to classify
the system as being in the “on” domain. Otherwise it was considered “off”. While the hyper-
plane test provides high “on” and “off”agreement, Figure 8 demonstrates that the adaptive
domain classification represents a more comprehensive description of the system. More so-
phisticated approximations can be generated using nonlinear kernels in the SVM. However,
for this particular example, the hyperplane in (45) provides a simple intuitive representation
without compromising accuracy.

7 Conclusion

In this paper we proposed a numerical strategy for detecting jump discontinuities from stochas-
tic simulation results obtained in the form of global polynomial expansions in multi-dimensional
random spaces. The strategy is an extension of the deterministic polynomial annihilation edge
detection method, [1], and works particularly well with the high order stochastic Galerkin or
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(c) (d)

(e) (f)

Figure 8: Visualization of the adaptive domain classification for the stochastic differential-
algebraic system (44) for the fixed parameters β = 2.5, γ = 1, σ = 0.1, and [IPTG] =
4.0 × 10−5. The gPC solution has two identifiable domain classes, visualized here by fixing
the dimension for the parameter K and displaying the remaining three parameters for (a)
K = 2.9618 × 10−5 − σ, (c) K = 2.9618 × 10−5, and (e) K = 2.9618 × 10−5 + σ. The gray
portion of the cube represents the “on” intensity domain and the void portion of the cube
represents the “off.” The figures in (b), (d), and (f) display the two classes when the boundary
between the two domains is approximated by a hyperplane.
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stochastic collocation methods based on generalized polynomial chaos (gPC). The algorithms
and implementation were presented, with an emphasis on their applicability in high dimen-
sional spaces. Upon correct identification of the discontinuities (if they exist), we are able
to classify the problem domain in terms of its regions of smoothness. We further derived an
adaptive procedure that refines the locations of the discontinuities and subsequently improves
the domain classification for a reasonable computational cost. Hence we can decompose the
entire random space into as few smooth sub-domains as possible and thus facilitate more
accurate stochastic simulations using a multi-element approach.

We emphasize that the proposed strategy represents only one of the first attempts to
identify the existence and location of discontinuities in stochastic simulations. Here we focus
on the applicability and potential of the method and leave many more issues, for example,
more efficient algorithms for very high dimensional random space, to further study.
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