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Abstract
We propose an object detection system that uses the loca-
tions of tracked low-level feature points as input, and pro-
duces a set of independent coherent motion regions as out-
put. As an object moves, tracked feature points on it span
a coherent 3D region in the space-time volume defined by
the video. In the case of multi-object motion, many possi-
ble coherent motion regions can be constructed around the
set of all feature point tracks. Our approach is to identify
all possible coherent motion regions, and extract the sub-
set that maximizes an overall likelihood function while as-
signing each point track to at most one motion region. We
solve the problem of finding the best set of coherent mo-
tion regions with a simple greedy algorithm, and show that
our approach produces semantically correct detections and
counts of similar objects moving through crowded scenes.

1 Introduction
The inherent ability of our visual system to perceive coher-
ent motion patterns in crowded environments is remarkable.
Johansson [7] described experiments supporting this splen-
did visual perception capability, demonstrating the innate
ability of humans to distinguish activities and count inde-
pendent motions simply from 2D projections of a sparse
set of feature points manually identified on human joints.
When we conducted similar experiments with the video seg-
ments used in this paper, reducing each to a swarm of mov-
ing bright dots (automatically extracted features) against a
dark background, human observers were easily able to de-
tect and classify the moving objects. This motivated us to
develop an automated system that can detect and count in-
dependently moving objects based on feature point trajec-
tories alone.

We propose an object detection system that uses the lo-
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Figure 1: Sample multi-object detection results from our
algorithm. The red number indicates the aggregate count of
independently moving objects detected in the video up to
the given frame.

cations of tracked low-level feature points as input, and pro-
duces a set of independent coherent motion regions as out-
put. We define a coherent motion region as a spatiotempo-
ral subvolume fully containing a group of point tracks; ide-
ally, a single moving object corresponds to a single coherent
motion region. However, in the case of many similar mov-
ing objects that may overlap from the camera’s perspective,
many possible coherent motion regions exist. Therefore, we
pose the multi-object detection problem as one of choosing
a good set of disjoint coherent motion regions that repre-
sents the individual moving objects. This decision is based
on a track similarity measure that evaluates the likelihood
that all the trajectories within a coherent motion region arise
from a single object, and is made using a greedy algorithm.
Figure 1 shows sample video frames with our algorithm’s
results overlaid.

With the exception of defining a single spatial bound-
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ing box that defines the expected object size, the proposed
approach can be considered as a general purpose algo-
rithm for detecting and counting large numbers of similar
moving objects. Our algorithm neither uses object-specific
shape models nor relies on detecting and assembling object-
specific components. Camera calibration is not required.
The proposed algorithm is computationally efficient, and
well-suited for camera network applications that require
sensors to distill video into compact, salient descriptions.
We demonstrate that our system can localize and track mul-
tiple moving objects with a high detection rate.

The remainder of the paper is organized as follows. In
Section 2, we review recent work on multi-object detec-
tion in video. In Section 3, we describe our framework for
estimating a good set of disjoint coherent motion regions.
Results obtained from several real video sequences are pre-
sented in Section 4. Section 5 concludes the paper with
ideas for future work.

2 Related Work
Previous approaches to detecting multiple moving objects,
often humans in particular, include methods based on com-
plex shape models [6, 22], generative shape models based
on low-level spatial features [18, 14], bag-of-features [20],
low-level motion pattern models [17], body-part assembly
models [21, 17, 13, 11] and low-level feature track cluster-
ing [4, 12, 5].

Gravila [6] proposed a shape exemplar-based object de-
tection system. A shape exemplar database is constructed
from a set of hundreds of training shapes and organized into
a tree structure. The problem of matching a new image re-
gion against the exemplars on the tree nodes is posed in a
Bayesian framework. The proposed object detection sys-
tem addressed automated pedestrian detection from a mov-
ing vehicle. Similarly, Leibe et al. [8] proposed an approach
for detecting pedestrians in crowded scenes that used a set
of hundreds of ground-truth segmentations of pedestrians.
These are used to build a bag-of-features type codebook
for objects (based on squares centered at detected interest
points). These local detectors are combined with global
shape cues learned from training silhouettes into an MDL-
type method to assign foreground pixels to human support
regions using mean shift estimation. Viola et al. [20] pro-
posed another bag-of-features approach to detect pedestri-
ans in a video sequence. A detector is scanned over two
frames of image sequence to extract features that relate to
variations in intensity gradients within this spatiotemporal
volume. The features thus extracted are used to train an
AdaBoost classifier to detect walking people.

Song et al. [17] addressed the problem of detecting hu-
mans based on motion models. A perceptual model of hu-
man motion is constructed from training sequences. La-

beled features on the human body are tracked, and the joint
probability density function of these features’ positions and
velocities are used to model human motion. During detec-
tion, features are tracked over two consecutive frames and
a person is detected if the features’ positions and velocities
maximize the posterior probability of the motion model.

Zhao and Nevatia [22] presented a key advance in find-
ing people in crowds. People are modeled with shape
parameters represented by a multi-ellipsoidal model, ap-
pearance parameters are represented by color histograms,
and a modified Gaussian distribution is used to model the
background. Candidates for head locations identified from
the foreground blobs direct a Markov chain Monte Carlo
(MCMC) algorithm to create new human hypotheses.

Another interesting approach [13, 11, 21] is the simul-
taneous detection and tracking of humans based on body
part assembly. Body part detectors rely on spatial features
and simple structural models to generate body part can-
didates. Body part candidates are assembled in a proba-
bilistic framework, allowing the system to make hypothe-
ses about probable human locations even in the presence of
inter- and intra-object occlusions. Leordeanu and Collins
[9] took an unsupervised learning approach based on the
pairwise co-occurrences of parts to identify parts belonging
the same object. Each object part is a collection of scale
invariant feature points extracted from frames and grouped
based on certain similarity conditions. Moving objects are
identified by matching parts and estimating their pairwise
co-occurrences.

Brostow and Cipolla [4] discussed scenarios in which
crowds were so dense that background subtraction or
model-based detection approaches would fail, since the
crowd takes up most of the frame and there are few mean-
ingful boundaries between entities. They proposed an un-
supervised Bayesian algorithm for clustering tracked low-
level interest points based entirely on motion, not on appear-
ance. Using a spatial prior and a likelihood model for co-
herent motion, they obtained qualitatively encouraging re-
sults on crowded videos of people, bees, ants, and so on.
Similarly, Rabaud and Belongie [12] addressed similar sce-
narios for counting moving objects. Under crowded situa-
tions, low-level feature extraction and tracking can result in
fragmented and noisy feature-point trajectories. They pro-
posed a trajectory conditioning strategy by propagating a
spatial window along the temporal direction of each trajec-
tory. New spatial coordinates for fragmented trajectories are
obtained by averaging other trajectory coordinates inside
this spatial window. Cheriyadat and Radke [5] proposed
an algorithm for clustering feature point tracks in crowded
scenes into dominant motions using a distance measure
based on longest common subsequences. Vidal and Hartley
[19] posed the point trajectory clustering as a problem of
finding linear subspaces representing independent motion.
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Point trajectories are projected to a five-dimensional space
using the PowerFactorization method and moving objects
are segmented by fitting linear subspaces to projected points
under a generalized principal component analysis frame-
work.

Tu and Rittscher [18, 14] took a different approach to
crowd segmentation by arranging spatial features to form
cliques. They posed the multi-object detection problem as
one of finding a set of maximal cliques in a graph. The spa-
tial features form the graph vertices, and each edge weight
corresponds to the probability that features arise from the
same individual. Their earlier work [18] dealt with over-
head views and the spatial feature similarity measure was
based on the assumption that the vertices lie on the circular
contour of a human seen from above. In the later work [14],
they used a a variant of the expectation-maximization al-
gorithm for the estimation of shape parameters from image
observations via hidden assignment vectors of features to
cliques. The features are extracted from the bounding con-
tours of foreground blob silhouettes, and each clique (repre-
senting an individual) is parameterized as a simple bound-
ing box. Our work is most similar to these approaches; the
coherent motion regions we propose are similar to maxi-
mal cliques in a graph. However, our work differs in the
important sense that the coherent motion regions extend in
time as well as space, enforcing consistency in detected ob-
jects over long time periods and making the algorithm ro-
bust to noisy or short point tracks. As a result of enforcing
the constraint that selected coherent motion regions contain
disjoint sets of tracks, our algorithm cannot be viewed as
taking place on a static graph. If we were to pose our al-
gorithm in a graph framework, the edges and their weights
would change at every iteration of the greedy algorithm, as
described further below.

We see our approach as a trade-off between algorithms
that require object models and/or a moderate amount of
prior information [6, 22, 21, 14, 13] and algorithms that
possess no model for objects at all [4, 12, 5, 19]. Our al-
gorithm operates directly on raw, unconditioned low-level
feature point tracks, and tries to minimize a global measure
of the coherent motion regions rather than approaching the
problem with bottom-up clustering.

3 Algorithm Overview

3.1 Feature Point Tracks

Our algorithm begins with a set of low-level spatial feature
points tracked over time through a video sequence. We de-
fine the ith feature point track by Xi:

Xi = {(xi
t, y

i
t), t = T i

init, . . . , T
i
final}, i = 1, . . . , Z. (1)

Here, Z represents the total number of point tracks. The
lengths of the tracks vary depending on the durations
for which corresponding feature points are successfully
tracked.

In our implementation, we first identify low-level fea-
tures in the initial frame using the standard Shi-Tomasi-
Kanade detector [16] as well as the Rosten-Drummond de-
tector [15], a fast algorithm for finding corners. The low-
level features are tracked over time using a hierarchical im-
plementation [3] of the Kanade-Lucas-Tomasi optical flow
algorithm [10]. The new features are tracked along with the
existing point tracks to form a larger trajectory set. For tra-
jectories that have initially stationary segments, we retain
only the remaining part of the trajectory that shows signifi-
cant temporal variations.

The user is also required to sketch a single rectangle that
matches the rough dimensions of the objects to be detected
in the sequence. Let the dimensions of this rectangle be
w × h.

3.2 Trajectory Similarity
We require a measure of similarity between two feature
point tracks. If both Xi and Xj exist at time t, we define

dx
t (i, j) = (xi

t − x
j
t )

(
1 + max
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j
t | − w
w
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dy
t (i, j) = (yi

t − y
j
t )

(
1 + max

(
0,
|yi

t − y
j
t | − h
h

))
Dt(i, j) =

√
dx

t (i, j)2 + dy
t (i, j)2

That is, if the features do not fit within aw×h rectangle, the
distance between them is nonlinearly increased. Our expec-
tation is that feature point tracks from the same underlying
object are likely to have a low maximum Dt as well as a
low variance in Dt over the region of overlap. Hence, we
compute an overall trajectory similarity as

S(i, j) = exp{−α∗(max(Dt(i, j))+var(Dt(i, j))}, (2)

where the maximum and variance are taken over the tempo-
ral region where both trajectories exist. For those trajecto-
ries where there is no overlap the similarity value is set to
zero. The pairwise similarities are collected into a Z × Z
matrix S. In our experiments below, we set α as 0.025.

3.3 Coherent Motion Regions
A key component of our algorithm is what we term a coher-
ent motion region. Mathematically, a coherent motion re-
gion is a spatiotemporal subvolume that fully contains a set
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of associated feature point tracks. In our case, each coherent
motion region is a contiguous chunk of (x, y, t) space that
completely spans the point tracks associated with it. Note
that all the feature point tracks inside this region might not
have complete temporal overlap. The set of all coherent mo-
tion regions can be represented by a binary Z ×M matrix
A indicating which point tracks are associated with each
coherent motion region.

Figure 2: (a) Illustrating candidate coherent motion regions
for a given set of point tracks. (b,c) The coherent motion
regions are updated by sliding a spatial window over each
frame and adding/deleting columns of the matrixA. (d) The
matrix A after time instant t = t3.

In practice, we generate the coherent motion region ma-
trix A by looping over the video frames, sliding a w × h
spatial window over each frame. A column is added to A if
a spatial window is found that contains a new subset of fea-
ture points not already represented as a column of A. If a
spatial window is found that is a proper superset of an exist-
ing coherent motion region, the column of A corresponding
to that region is deleted. In this way, only “maximal” coher-
ent motion regions are recorded in the A matrix.

Figure 2 illustrates several example coherent motion re-
gions for a set of point tracks. The dots in the figure denote
the spatial locations of the feature points at a particular time
instant. At time instant t = t1, the point tracks form two
coherent motion regions, shown as m1 and m2 in Figure
2a. At a later time instant t = t2, the spatial location of
point trackX5 triggers an update of coherent motion region
m1, because the newly formed group is a superset of the
previous one. Track X6 triggers the generation of a new

coherent motion region m3. Figure 2d shows the status of
the matrix A after the time instant t = t3 shown in Figure
2c. For the video sequences used in this paper, we found M
to be in the range 3000-5000. Figure 3 shows an example
video frame in which coherent motion regions are identified
as red rectangles.

Figure 3: Coherent motion regions identified by the algo-
rithm for an example frame.

We also associate anM -vector Lwith the set of coherent
motion regions, indicating a “strength” related to the overall
likelihood that the coherent motion region corresponds to a
single object, created by

L(j) = A(j)TSA(j) (3)

where A(j) is the jth column of A.

3.4 Selecting the Coherent Motion Region
Subset

Conceptually, we would like to select a subset V of coherent
motion regions that maximizes the sum of the strengths in
V , subject to the constraint that a point track can belong
to at most one selected coherent motion region. We use a
greedy algorithm to estimate a good subset V as follows:

1. Set V = ∅.

2. Determine j∗ /∈ V with maximal L(j).

3. Add j∗ to V and set A(i, j) = 0 for j 6= j∗ and all i
such that A(i, j∗) = 1.

4. Recompute L(j) for the remaining j /∈ V and repeat
steps 2-4 until L(j∗) < β · maxj∈V L(j). In our im-
plementation, we used β’s in the range 0.01-0.1.

This approach differs from a soft-assign approach of as-
signing tracks to cliques (e.g., extending [18]), since the
greedy algorithm explicitly enforces the constraint that se-
lected coherent motion regions be disjoint at each iteration.
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Our approach could be viewed as starting with a highly con-
nected graph in which edges are progressively removed and
the sum of edge weights (likelihood) updated.

We observed that the best coherent motion regions are
typically selected around objects that have been visible for
some time. Since new feature point tracks are detected and
tracked in each frame, a longer-duration object has a greater
opportunity to gather feature tracks. Although some of an
object’s tracks may be lost or “picked up” by other objects,
the remaining consistent tracks will yield a coherent mo-
tion region with high likelihood value. Selecting a high-
likelihood coherent motion region in the greedy algorithm
results in lowering the likelihood values of other coherent
motion regions containing tracks that are part of the selected
coherent motion region.

4 Results

We illustrate the performance of our algorithm on seven dif-
ferent video sequences typically used in multi-object track-
ing, featuring various types of objects including moving
people, ants and vehicles. Although features related to ob-
ject appearance and shape could be extracted from these se-
quences, we show that good performance can be obtained
from feature point tracks alone.

The first video sequence, termed the campus sequence,
shows a busy campus walkway (Figure 4a-d). The second
video sequence, termed the GE sequence, shows a group of
nine people walking together with significant intra-object
occlusion during most of the sequence (Figure 4e-f). The
third sequence, termed the metro sequence, was obtained
from the PETS database [2] and shows people walking
across a rail platform (Figure 4g-h). The fourth and fifth
sequences, termed highway-1 and highway-2, show fast-
moving vehicles on a highway (Figure 4i-j). During most
of the highway-2 sequence, the camera is swaying heavily
in the wind, which is typical of such outdoor camera in-
stallations. The sixth video sequence, termed the overhead
sequence and part of the CAVIAR database [1], shows four
people walking through a corridor (Figure 4k). The seventh
video sequence, termed the ant sequence, shows many ants
moving randomly on a glass plate (Figure 4l-m).

The feature point trajectory generation is fast and com-
parable with the frame rate of the video sequence (i.e.,≈ 15
frames/sec). The multi-object detection algorithm is imple-
mented in non-optimized Matlab code that takes less than
3 minutes of running time for each test video sequence
reported here. Figure 5 shows comparisons between ob-
ject counts made by a human observer and determined by
the algorithm for each sequence. For the campus, metro,
highway-1 and highway-1 sequences, both the counts were
made for the spatial region identified by the red rectangle

indicated in Figure 4a, g, i and j. The average false nega-
tive and average false positive detections across all the se-
quences are 12% and 4% respectively. We observed that the
undercountings in Sequences 4 and 5 were due to the failure
of the KLT tracker to generate feature points on several of
the fast-moving vehicles.

As illustrated in Figure 6, the proposed general purpose
object detection system yields comparable results with the
object-specific trackers reported by Rittscher et al. [14] and
Zhao et al. [22] for person detection and tracking, as well
as with the general-purpose tracker of Brostow and Cipolla
[4]. Our algorithm is able to overcome some of the difficul-
ties in detecting individual objects that move in unison. To
get a better appreciation of the detection results, we refer
the reader to the following web link for the result videos:
http://www.ecse.rpi.edu/˜rjradke/pocv/.

Figure 5: Object count determined by the algorithm com-
pared with manual count for seven video sequences. The
number in parentheses indicates the number of frames in
each sequence.

5 Conclusions and Future Work

In this paper we introduce a simple approach based on
coherent motion region detection for counting and locat-
ing objects in the presence of high object density and
inter-object occlusions. We exploit the information gener-
ated by tracking low-level features to construct all possible
coherent-motion-regions, and chose a good disjoint set of
coherent motion regions representing individual objects us-
ing a greedy algorithm. The proposed algorithm requires no
complex shape or appearance models for objects.
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Figure 4: Sample results for seven different video sequences. The red number indicates the aggregate count of independently
moving objects detected in the video up to the given frame. (a)-(d) Campus sequence. (e)-(f) GE sequence. Both sequences
include substantial inter-object overlap and occlusion. (g)-(h) Metro sequence. (i) Highway 1 sequence. (j) Highway 2
sequence. (k) Overhead sequence. (l) Ant sequence. Note that several stationary ants are not detected by our algorithm,
which is designed to find moving objects. The large red rectangle overlaid on subfigures (a),(g),(i) and (j) indicates the region
within the frame where moving objects are detected and counted.

6



Figure 6: (a),(d) illustrate example results from Zhao and Nevatia’s model based tracker [22], (b),(e) illustrate example results
from Brostow and Cipolla’s independent motion detector [4], and (c),(f) illustrate our algorithm’s results for corresponding
frames from the campus sequence. (i) illustrates an example result from Rittscher et al.’s object-specific tracker [14], (j)
illustrates an example result from Brostow and Cipolla’s independent motion detector, and (k) illustrates our algorithm’s
result for one frame of the GE sequence.

False positives in our algorithm would occur in the pres-
ence of heterogeneous object classes. For example, a per-
son pulling a large cart might be counted as two moving
persons, or a large truck may be counted as two cars. False
negatives occur when very few feature points are identified
on an object, resulting in very low likelihood values and
hence undetected objects.

Possible extensions of this work include the incorpo-
ration of other cues such as appearance which could al-
low the system to maintain class-specific counts (e.g., cars
vs. pedestrians or adults vs. children).
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