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Background

• Negative valve overlap variable valve actuation (NVO VVA) with no 
throttling can produce low NOx and good efficiency in low to mid load 
range and mid speed range for gasoline engines

• Combustion phasing and stability is controlled by exhaust valve 
closing angle (EVCA), which controls amount of EGR and 
recompression heating of cylinder

• This type of engine normally runs slightly lean, but should be able to 
run stoichiometric

• Stoichiometric operation enables three way catalysts (TWC) and 
assists mode transitions to conventional combustion with high or low 
EGR

• Fully flexible engines should be able to achieve HCCI, PCCI, lean burn, 
and conventional combustion, giving engine designer more options
and allowing mode switching
– Should I say ‘partially stratified HCCI’ instead of ‘PCCI’ when 

referring to gasoline engines?
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Purpose of research

• Evaluate ability of negative valve overlap gasoline HCCI engine 
to maintain stoichiometric combustion and evaluate
– Control
– Efficiency
– Effectiveness of TWC for emissions control
– Effect of catalyst aging
– Effectiveness of cetane improvers for ignition control

• Note that we have not answered all the questions, so I will ask a 
few during this presentation

• Research supported by DOE fuels program. Steve Goguen, 
Kevin Stork, and Dennis Smith are team leaders at DOE.
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The engine
• AVL single cylinder HCCI engine

– Located in Plymouth, MI
– Used under subcontract

• Engine parameters
– 3 valve hemi head
– Sturman VVA system
– 487 cc, 11.34 CR, NA
– Spark, no spark
– PFI and DI
– Open loop control system

• Widely used in previous research
– ORNL

• Spark HCCI
• Gasoline fuel effects
• Non-linear dynamics analysis 

and control of combustion
– CRC AVFL13 fuel effects

CATALYST 
INSTALLED 

HERE
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Operating characteristics of engine (all data)

Low cat temperatures at low loads
(due to single cylinder engine or 
inherent to HCCI?)

High NOx at higher cat temperatures
(reduced levels of retained exhaust)

Cat in temperature vs. IMEP

200.0

300.0

400.0

500.0

600.0

700.0

0.00 2.00 4.00 6.00

IMEP, bar

ca
t i

n 
te

m
p.

, d
eg

.C

NOx ppm vs. cat in temperature

0

500

1000

1500

2000

2500

200 300 400 500 600 700

cat in temperature, deg.C

en
gi

ne
 N

O
x,

 p
pm

CO and HC ppm vs. cat in temperature

0

10000

20000

30000

40000

50000

200 300 400 500 600 700

cat in temperature, deg.C
en

gi
ne

 C
O

, p
pm

0

1000

2000

3000

4000

5000

en
gi

ne
 H

C
, p

pm

CO in
HC in

High HC at light load

IT LOOKS LIKE SOME FORM OF
CATALYST WILL BE NEEDED
FOR ALL OPERATING POINTS



6 Managed by UT-Battelle
for the Department of Energy

Three way catalyst used

• Supplied by Catalytic Solutions (Oxnard, CA)
– 2005 model year release production catalyst

• Pt/Pd/Rh = 8/50/8 g/ft3
• Base-metal promoter package
• High-Zr OSM, alumina support
• Two-layer construction
• 600 cpsi

• 2” x 6” cores
– 0.63 catalyst volume to engine displacement ratio
– Installed about 12” downstream from cylinder head
– Catalysts run in two conditions

• Un-aged – as received
• Aged – 24 hours at 1000 deg.C in argon + 10% H2O

– Later identified as a severe oxidation aging condition
– We did not ‘reactivate’ PGM after oxidation  

• Special thanks to Steve Golden and Svetlana Iretskaya of Catalytic 
Solutions for catalyst samples and advice
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The fuels

• Indolene
– 97.0 RON, 88.8 MON, 8.2 sensitivity

• Indolene + 3000 ppm di-tert butyl peroxide (DTBP)
– 93.0 RON, 88.8 MON, 4.2 sensitivity

• Indolene + 3000 ppm ethyl hexyl nitrate (EHN)
– 90.8 RON, 84.6 MON, 6.2 sensitivity

• Special thanks to Paul Richards of Innospec for discussion and 
samples of cetane improvers
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Modeling of data set

• Independent variables are RPM,  fuel 
pulse width, EVCA, MAP, RON, 
sensitivity, and added N (from EHN)

• Used PCA and built model into simulator 
format for ease of use
– Simulator used to ‘repeat’

experiments for parametric studies
• Model is first order with interactions and 

dependent variables transformed as logs
– 18 eigenvectors, 25 terms each

• Catalyst light-off and lambda effects 
required special functions
– Logistic function for HC and CO
– Log normal (right skewed) for NOx

• Modeling work by Robert W. Crawford of 
Rincon Ranch Consulting

Model R2
ISFC   0.80
NOx    0.98
IMEP   0.99
Lamda  0.86
CA1090 0.75
MFB10  0.86
MFB50  0.85
MFB90  0.62
Noise  0.91

dPdCA  0.88
COVPct 0.91

HC     0.88
CO     0.63
cat T  1.00

Dependent variables
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Control of engine for Stoichiometric HCCI
• Engine is ‘nominally’ stoichiometric, but generally slightly lean
• It was very difficult to control to exact stoichiometric operation

– Engine has open loop control
– Unstable operation at lambda = 1 with high COV, CO, and HC
– Some uncertainty about catalyst condition due to over-temperature 

events
– Melted 3 catalysts during program by lean operation after rich misfire

• Required multiple modes to cover desired catalyst operating conditions
– 8 different speed / fueling combinations
– Spark assist required for some conditions
– Mostly PFI, but DI required for some conditions
– EVCA ranged from 232 to 342 ATDC
– Use of throttle

• No single mode was able to cover a wide operating range
• Throttle and fuel additives were used to open up normal relationships 

between EVCA, lambda, and MFB50
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Operating ranges achieved
• Managed to cover a wide range of operating conditions

– IMEP: 2.0 to 5.4 bar
– 1600 and 2400 rpm
– IMP: 1.0 to 0.5 bar absolute
– Lambda: 0.88 to 1.25
– MFB50: 0 to 13 ATDC
– Cat in Temperature: 240 to 620 deg.C
– NOx: 0.5 to 2260 ppm

• Experiment evolved as we went
– It was more difficult to cover this range than we expected
– 568 data points, consisting of pockets of data with very wide 

spaces in between and very non-orthogonal
– Some conditions exhibited high COV and/or drifting
– Difficult to model the data
– Plus, TWC catalyst behavior is also inherently non-linear
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Experimental design evolved as we searched for
temperatures and stable operation, burned up

catalysts, and used up budgeted cell hours

Operating conditions for experiments
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Throttling effect on NVA engine

Throttling decreases lambda, increases ISFC, and increases emissions

(Gross = net + pumping and pumping is negative for NA operation)

ISFC and lambda vs. IMP, 1600-2.9
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Very moderate throttling increases pumping losses

NVA HCCI
3.0 bar IMEPg, -0.30 bar pumping
220 gm/kwhr ISFC
1.0 bar IMPa
248 EVCA
11 ppm NOx
1.09 lambda

NVA HCCI
2.8 bar IMEPg, -0.34 pumping work
237 gm/kwhr ISFC
0.98 bar IMPa
251 EVCA
14 ppm NOx
1.05 lambda
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Increased throttling continues to hurt ISFC
and significantly alters combustion
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Experimental vs. modeled NOx reductions for un-aged catalyst

% NOx reduction with unaged catalyst,
all temperatures
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One source of variation is
sequential measurements
for cat in and cat out emissions
combined with slow engine drift
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Performance of un-aged catalyst
% reductions vs. lambda, HC, CO, and NOx
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Un-aged catalyst not as good as expected,
Maximum reductions ≈ 90% NOx, 96% CO, and 80% HC,
Crossover conversion is low (70%), 95% expected

Could this be due to high or different HC from HCCI operation?
Also, don’t forget over-temperature events and
effects of experimental variations on on the statistical model
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Significant loss in performance from aging
(however, aging cycle used may have been too severe or incomplete)

New catalyst performance, 265 deg.C inlet
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Cetane improver effects
Cetane improvers lower octanes,
advances combustion phasing,
and increases NOx

Could not separate out NOx effects
With EHN, too tied-in with octane
values for this limited set of fuels

Centan improver effect on octane
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Conclusions
• An NVO engine can be operated at stoichiometric conditions

– We used EVCA and throttling to achieve some independence of MFB50 and 
lambda

– This engine was not particularly happy at stoichiometric operation
• High CO, HC, COV

– If stoichiometric operation is achieved with throttling, a fuel penalty is 
incurred

– Are these characteristics universal or related to engine used?
• TWC can provide NOx, HC, and CO reduction on stoichiometric HCCI engine

– This is a challenging application
– High HC and CO emissions
– Low exhaust temperatures

• Or is this just an artifact of single cylinder engine?
• Cetane improvers can be used to improve ignition of high octane gasoline and 

do reduce octane numbers
– Dosage rate is high for a significant change
– EHN and DTBP behave slightly differently
– We were unable to separate out EHN contribution to NOx from small 

number of fuels in this program
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Notes from our previous
research on gasoline HCCI

• Low NOx is achieved by high dilution, either from lean 
operation or very high EGR

• There is nothing magical about HCCI except that it stabilizes 
combustion at very high dilution levels, thereby enabling ultra-
low NOx operation

• A spark assist can help stabilize gasoline HCCI under certain 
conditions

• Improved efficiency for gasoline HCCI comes largely from un-
throttled operation
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Future work

• Continue to study stoichiometric HCCI in order to
– Understand and expand operating range
– Gain improved fuel economy along with low NOx
– Develop better understanding of different operating modes and 

mode switching
• Lean and stoichiometric HCCI
• Lean and stoichiometric conventional with high EGR
• PCCI (or ‘partially stratified HCCI’?)

– Better define catalyst requirements, operating conditions, catalyst 
performance,  and aging effects
• Both stoichiometric and lean operation

• Continue to use fuel variations in these experiments
– Define fuel chemistry and property effects
– Determine characteristics of an ‘optimum’ HCCI fuel
– Determine control robustness across expected range of fuels 


