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Background – Materials for HCCI

• Funded by DOE advanced transportation materials program
• Jerry Gibbs, program coordinator
• Overall project began 2005

− Interviewed companies
− Reviewed program with Diesel Crosscut group
− Research underway for improved materials for exhaust 

valves and exhaust manifolds
• Added three new areas in 2007 (exploratory)

− Combustion chamber catalysts for HCCI
− Ultra high mag materials processing
− Friction and wear reduction



3

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Materials for HCCI: Status of Project Tasks

• Survey industry to determine advanced materials needs
− Complete - results presented to crosscut 11/04

• Improved cast irons for exhaust manifolds
− Partnership with GM
− Designed lower cost alloys by substituting titanium for manganese
− Raised BCC to FCC transition temperature by 20 to 40 deg.C thru other alloy 

modifications
− Trial heats demonstrated improvements, complete manifold fabrication in progress
− Several patents filed

• Improved austenitic stainless steels and nickel alloys for exhaust valves
− Partnership with Eaton
− Identified γ’ as important grain boundary characteristic for high temperature fatigue
− Developing fatigue database through high temperature rotating beam tests
− Improved alloys designed - will be evaluated in 2008

• Ultra high mag processing for retained austenite conversion as alternate to LN2 processing
− Process demonstrated on 52100 samples
− High RA fuel injection components obtained
− Building process fixtures and completing baseline measurements 

• Combustion chamber catalyst for HCCI
− Procured experimental parts (modified piston, metallic substrate, catalytic coating)
− Conducted HCCI engine evaluation
− Produced measurable, but not desirable effects on combustion profile
− Substrates failed through melting and high temperature fatigue after a few hours
− Currently exploring chamber coatings to reduce HCCI wall quenching

• Coatings and surface modification to improve friction and wear
− Main subject of this talk
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Interests relative to friction, wear, and coatings for 
power cylinder system from industry interviews

• power cylinder wear, corrosion, and erosion …… surface 
modifications for improved fatigue and wear performance

• thermal barrier coatings and other surface engineering methods  
• improved low friction piston/ring/liner components
• minimized heat rejection …… including advanced coatings ……

higher oil temps …… need for more wear resistant liner and ring 
material pairs

• reduce in-cylinder heat transfer  
• enable high temperature without loss of strength
• heat-treatment enhancement to enable high hardness for wear 

resistance (rings, liners)
• wear and seizure concerns …… cylinder pressure increase and 

higher dynamic load (piston ring pack)
• importance of ‘surface design’ for piston rings, cylinder liners
• thin thermal barrier coatings …… high impedance to heat flow
• catalytic coatings to enhance combustion near the chamber walls.
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Initial focus on piston ring – liner interface

• Known wear point for IC engines
• Complex combination of hydrodynamic and boundary 

lubrication
• Increasingly challenging application

− Extended durability requirements
− Contamination – EGR
− Increased stress – EGR, IMP, and PCP
− New lube formulations
− New fuels, new combustion, and new injection 

strategies
− Conflicting requirements with aftertreatment durability



6

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Pathways to friction improvements

• Coatings / surface treatments
− Effects may be small with hydrodynamic lubrication

• New lubes or additives
− A well researched area
− Very complex requirements for engine oils

• Lower viscosity lubes
− Already in use
− Further evolution may be enabled by coatings

• Bearing geometry
− Surface textures can reduce hydrodynamic friction
− Smaller bearings can reduce friction
− Design changes may be enabled by coatings

• Coatings may also provide protection under adverse 
operating conditions (starting, cold, hot, contaminated, 
unstable, etc.)
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Test Configuration and Condition

• Piston Ring-on-Flat Reciprocating Sliding Test 
(ASTM G 181-04)

• Materials
− Slider: Cr-plated piston ring
− Flat: Candidate coatings on low alloy gray 

cast iron engine cylinder sample
• Lubricants: 15W40 engine oil
• Temperature: 100 oC
• Sliding speed: 0.2 m/s (10 Hz, 10 mm stroke)
• Friction test

− Stepping load: 20-240 N, 30 sec each
• Wear test

− 240 N load for 6 hours



8

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Candidate Coatings and Surface Treatments

• DLC-Si (Vista Engineering and Consulting, LLC)
• Multi-coats (2, 4, 6, and 8) of ZrO2 (C3 International, LLC)
• RF85 surface treatment (Better-Than-New, LLC)
• Moleculardiamond coating (Chevron)
• CVD and other impregnation coatings (ORNL)
• Nanocrystalline metallic carbides/nitrides + graphite (Timken)
• Super finish + surface conversion (REM Chemicals)
• Low Temperature Colossal Super Saturation (LTCSS) for Austenitic 

Stainless Steels (Swagelok Company)

• Coating substrate: Grey cast iron (GCI) for most coatings, except 
LTCSS using 304 stainless steel
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Slider: Cr-Plated Piston Ring

• Commercial piston ring 
− Cast iron substrate
− 300 μm thick, plasma-plated Cr-based top layer 
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Flat: Simulation of Cylinder Bore Surface Finish

• Comparison of Surface Roughness for Actual and Simulated Cylinder Liners*

*Blau, P.J., “Simulation of Cylinder Bore 
Surface Finish Parameters to Improve 
Laboratory-Scale Friction Tests in New and 
Used Diesel Oil,” Proceedings of ASME 
2001 ICE Division Fall Technical 
Conference, Chicago, IL - Sep. 23-26, 2001.
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Vista DLC-Si vs. Uncoated GCI – Friction Test

• Vista DLC-Si was slightly beneficial at higher loads
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Vista DLC-Si vs. Uncoated GCI – Wear Test

• Vista DLC-Si had lower initial friction coefficient, but higher final value (due to 
the top DLC coating broken-off to expose the less lubricative inter-layer)

• Vista DLC-Si reduced the liner wear rate (due to the hard, wear-resistant inter-
layer)
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Vista DLC-Si Wear Scar Analyses
• Vista DLC-Si top coating was worn-off to expose the inter-layer, probably TiC that is less 

lubricative but more wear-resistant than DLC-Si.
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C3 ZrO2 Multi-Coats vs. Uncoated GCI – Friction 
Test

• No apparent friction reduction of C3 ZrO2 8-coats (~0.2 μm thick) compared with GCI, 
except the smooth one at low contact stresses
− C3-8: 8 coats of ZrO2 on ‘as-honed’ GCI surface (rough)
− C3-8p: 8 coats of ZrO2 on polished GCI surface (smooth)
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C3 ZrO2 Multi-Coats vs. Uncoated GCI – Wear Test

• ZrO2 coatings had similar initial and final friction coefficients in the 6-hour wear 
tests compared with uncoated GCI.

• ZrO2 coatings had higher wear rates than uncoated GCI, possibly because 
coatings failed and produced abrasive wear debris that accelerated the material 
removal of the GCI substrate.
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C3 ZrO2 Multi-Coats Wear Scars
• Coatings worn through and had deeper wear scars 

than uncoated GCI.
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BTN RF85 vs. Uncoated GCI – Friction Test

• RF85 produced slightly higher friction coefficient compared with uncoated 
GCI. 

0.05
0.06
0.07
0.08
0.09

0.1
0.11
0.12
0.13
0.14
0.15

0 50 100 150 200 250

Load (N)

Fr
ic

tio
n 

C
oe

ffi
ci

en
t

GCI BTN



18

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

BTN RF85 Coating vs. Uncoated GCI – Wear Test

• RF85 had slightly higher friction coefficient than uncoated GCI at both the initial 
and final stages in the 6-hour wear tests.

• RF85 had higher wear rate than uncoated GCI.
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304 Stainless Steel - Galled

• Galling occurred at 120 N normal force during the step-
load friction test with friction coefficient transitioned from 0.12 
to above 0.50. (Test was stopped there.)

• The wear rate of 304 SS was three orders of magnitude 
higher than that of GCI.
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Swagelok LTCSS Treated 304 Stainless Steel –
Friction Test

• LTCSS prevented 304 SS from galling.
• LTC-304 produced lower friction coefficient by up to 33% than GCI and 

untreated 304 SS (more beneficial at higher loads).
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Swagelok LTCSS Treated 304 Stainless Steel –
Wear Test

• The wear rate of LTC-304SS was 58% lower than that of GCI and three orders of 
magnitude lower than that of untreated 304 SS.

• The friction coefficient of LTC-304SS was low (0.08) at the beginning, but 
gradually increased and stabilized at a higher level (0.12) after about 2 hours 
testing.
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Swagelok LTC-304 SS – Why Friction Coefficient 
Increased During Sliding?  

• The coverage of ZDDP-based boundary film 
(dark regions) is gradually reduced over 
time.

• Localized scuffing features (small bright 
spots) started dominating after the 
transition. 0.04
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• Galling occurred with a high friction coefficient of 0.37.
• The wear rate of Ti-6Al-4V was 4 orders of magnitude higher than that of 

GCI.

Log scale!

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

GCI Ti-6Al-4V

Fr
ic

tio
n 

C
oe

ffi
ci

en
t Final @

240 N

Results of titanium were from a previous 
project supported by DOE Materials 
Program



24

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

ORNL Oxygen Diffusion (OD) Treated 
Ti-6Al-4V 

• A hardened surface layer 1-300 μm thick with surface harness 12-14 GPa HK, much higher than GCI (3.0 
GPa) and untreated Ti64 (3.7 GPa).

• The wear rate of OD-Ti64 was 2 orders of magnitude lower that of GCI and 6 orders of magnitude 
lower than that of untreated Ti-6Al-4V.

• The friction coefficient of OD-Ti64 was comparable to that of GCI and 70% lower than that of untreated 
Ti-6Al-4V.
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Anti-Wear Nano-Boundary Film Detected on 
the OD-Ti64 Surface

Carbon coating for TEM 
sample preparation

Amorphous oxide 
layer (50-100 nm)

OD layer
(30-40 μm)

ZDDP-based anti-
wear boundary film
(50-100 nm)

The TEM work was supported by HTML. 
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Chevron Molecular Diamond Coated GCI – Friction 
Test
• The Molecular Diamond coating (Mole-C) produced lower friction coefficient 

than the uncoated GCI at lower loads. 
− The friction transition probably indicates a coating failure.
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Chevron Molecular Diamond Coated GCI – Wear 
Test

• The Mole-C coated surface had high 
wear rates on both itself and its 
counterface.
− Probably due to the hard, 

abrasive wear debris produced 
by the fractured coating.
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REM Isotropic Superfinish of GCI – Friction 
Test

• The isotropic superfinish (ISF) slightly reduced friction by 1-11% over the test 
load range.
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REM Isotropic Superfinish of GCI – Wear Test

• Isotropic Superfinish (ISF) reduced friction in the early stage but had similar friction coefficient as 
the uncoated GCI after reaching the steady-state.

• The ISF processed liner had a lower wear rate compared to the uncoated GCI the but it 
increased the wear rate of the ring (counterface).  ISF showed little effect on the total wear rate 
(liner+ring).
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REM wear Scar Images
ISF Processed GCI Flat Cr-plated Ring
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Coating Characterization Using Scratch Test 

• Spherical diamond indenter with 0.2 
mm tip radius

• 100 – 5000 g-f normal load
• 0.2 m/s scratching speed
• Output:

− Scratch hardness (HSp)
(ASTM G 171 – 03)

− Coating failure mode

CSEM REVETEST®
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Vista DLC-Si Coating on GCI

• Scratch hardness gradually increases along with the normal load up to 
600 g-f, due to penetrating into the harder interlayer (TiC?).

• Scratch hardness suddenly dropped at the normal load of 800 g-f, 
indicating the through-penetration of the coating layers.
− also suggesting the coating thickness around 1 μm.
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Vista DLC-Si Coating on GCI

• Scratch morphology confirmed the coating’s
− top layer broken through at 400 g-f and
− interlayer broken through at 1000 g-f

• No severe coating fracture indicating good coating adherence.

200 g-f 400 g-f 600 g-f 800 g-f 1000 g-f
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Effect of Viscosity and Additives of Lubricants on 
Friction and Wear

• Cr-plated ring against uncoated GCI at 100 oC
• Viscosity@100 oC: 15W40 oil 11.3 cP and mineral oil 6.3 cP
• Lower viscosity led to a slightly lower friction coefficient.
• Anti-wear additives and higher viscosity produced a lower wear rate.
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Summary – Coatings Wear Behavior

*The wear rate of untreated 304 stainless steel was three orders
magnitude worse than that of GCI (not shown here).
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Interm conclusions

• Reciprocating rig is capable of showing differences 
between coatings in lubricated friction and wear tests

• Test appears to be repeatable
• Friction and wear tests are run sequentially and take about 

8 hours, including heating and cooling time
• Tests combine friction evaluation, wear measurements, 

metrological, and SEM analyses of surfaces
• Coatings were not uniformly beneficial for reducing friction 

or wear
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Future work
• Dependent on availability of research funds
• Review plan and results with interested parties (MIT, GWU, DOE, 

Diesel Crosscut
• Complete evaluation of remaining samples
• Run baseline series with different lube oil viscosities and/or 

formulations
• Run series of experiments with used/contaminated lube oil
• Evaluate successful coatings with lower friction lubricants
• Determine relationship between 8 hour test sequence and actual 

engine application
• Hertzian sliding evaluation for coating adhesion and tensile strength
• Evaluate combinations with a device closer to actual engine 

application
− Motored friction rig
− Small diesel engine

• Modeling and development of ‘rule set’ for coatings
• Recommend coatings for Vehicle Technology 45% BTE efficiency 

engine


