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ABSTRACT 
 
 Creep data are often analyzed using derived 
engineering parameters to correlate creep life (either 
time to rupture, or time to a specified strain) to applied 
stress and temperature.  Commonly used formulations 
include Larson-Miller, Orr-Sherby-Dorn, Manson-
Haferd, and Manson-Succop parameterizations.  In this 
paper, it is shown that these parameterizations are all 
special cases of a common general framework based on 
a linear statistical model.  Recognition of this fact allows 
for statistically efficient estimation of material model 
parameters and quantitative statistical comparisons 
among the various parameterizations in terms of their 
ability to fit a material database, including assessment of 
a stress-temperature interaction in creep behavior.  This 
provides a rational basis for choosing the best 
parameterization to describe a particular material.  
Furthermore, using the technique of maximum 
likelihood estimation to estimate model parameters 
allows for a statistically proper treatment of runouts in a 
test database via censored data analysis methods, and for 
construction of probabilistically interpretable upper and 
lower bounds on creep rate.  Comparisons are made to a 
generalization of the commonly used Larson-Miller 
parameterization (namely, the Mendelson-Roberts-
Manson parameterization), which is comparable in 
complexity to the Manson-Haferd parameter, but utilizes 
a reciprocal temperature dependence.  The general 
framework for analysis of creep data is illustrated with 
analysis of Alloy 617 and HAYNES® 230® alloy1 (Alloy 
230) test data. 
 
* This paper has been authored by a contractor of the U.S. Government under 
contract No. DE-AC12-00-SN39357. Accordingly, the U.S. Government 
retains a non-exclusive, royalty-free license to publish or reproduce the 
published form of this paper, or allows others to do so, for U.S. Government 
purposes.   
 
1 HAYNES and 230 are trademarks of Haynes International, Inc. 

1.0 INTRODUCTION 
 
  Project Prometheus was initiated to develop a 
space nuclear/electric reactor system for a wide range of 
deep space and terrestrial missions. The basic concept was a 
compact fast reactor coupled with a direct gas Brayton cycle 
turbine that would drive on-board generators for electrical 
power. The Jupiter Icy Moon Orbiter (JIMO) mission was 
selected as the first mission and required operation for up to 
15 years. The following represents part of the efforts to 
support the development of preliminary structural design 
procedures for pre-conceptual structural component sizing 
analyses. 
 
Creep data are often analyzed using derived engineering 
parameters to correlate creep life (either time to rupture, or 
time to a specified strain) to applied stress and temperature.  
Commonly used formulations include Larson-Miller, Orr-
Sherby-Dorn, Manson-Haferd, and Manson-Succop 
parameterizations.  In this paper, it is shown that these 
parameterizations are all special cases of a common general 
framework based on a linear statistical model.  Recognition 
of this fact allows for statistically efficient estimation of 
material model parameters, and quantitative statistical 
comparisons among the various parameterizations in terms 
of their ability to fit a material database, including 
assessment of a stress-temperature interaction in creep 
behavior.  This provides a rational basis for choosing the 
best parameterization to describe a particular material.  
Furthermore, using the technique of maximum likelihood 
estimation to estimate model parameters allows for a 
statistically proper treatment of runouts in a test database 
via censored data analysis methods, and for construction of 
probabilistically interpretable upper and lower bounds on 
creep rate.  Comparisons are made to a generalization of the 
commonly used Larson-Miller parameterization (namely, 
the Mendelson-Roberts-Manson parameterization), which is 
comparable in complexity to the Manson-Haferd 
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formulation, but with an inverse temperature dependence 
that is characteristic of many creep mechanisms.  The 
general framework for analysis of creep data is 
illustrated with analysis of the nickel-chromium Alloys 
617 and 230 test data. 
 
1.1 Engineering Creep Parameters 
 
 Creep testing of structural alloys typically 
consists of multiple tests, performed under accelerated 
conditions covering a range of temperatures and applied 
stresses.  Engineering creep parameters are used for 
extrapolating accelerated creep test results to the stress 
and temperature conditions of interest.  These 
parameters relate absolute temperature (denoted herein 
as T) with time to a specified condition (denoted as t), 
typically either rupture or 1% strain.  Reference 1 
provides a concise summary of the four engineering 
creep formulations considered in this report, namely 
Larson-Miller, Orr-Sherby-Dorn, Manson-Haferd, and 
Manson-Succop.   
 
In fitting an engineering creep parameter to a database, 
the data are often first normalized to an “iso-stress” 
condition; that is, the measured times (t) are adjusted for 
each temperature included in the experimental matrix to 
approximate a constant stress condition across the entire 
database.  The temperature effect is then fit in a second 
step, using the normalized iso-stress data. 
 
The Larson-Miller formulation assumes that a specified 
point (1/T, log(t)) = (0, C) is on every iso-stress line 
(Figure 1).  The slope of each iso-stress line is 
 

 log( ) ( ) (log( ) )1 0

t C T t C

T

− −
= +

−
.  [1] 

 
Making the additional assumption that the slope is a 
linear function of log(σ) (or, equivalently, log(σ) is a 
linear function of the slope) yields: 
 

 log( ) (log( ) ).a b T t Cσ = + ⋅ +         [2] 
 
This implies: 
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Figure 1.  Larson-Miller creep parameterization. 

 
In contrast, the Manson-Haferd formulation assumes that 
for a fixed stress σ, log(t) is a linear function of T (vice 1/T) 
and that all of the lines go through a common point (Ta, 
log(ta)) (Figure 2).  So, the slope for a given stress is  
 

  log( ) log( )a

a

t t
T T
−     [4] 
−

 
With the additional assumption that the slope is a linear 
function of log(σ), this becomes: 
 

 log( ) log( ) log( )a

a

t t a b
T T
− ,   [5] = + ⋅
−

σ

 
which implies  

 
( )log( ) log( )

log( ) log( )
a a

a

t t a T a T
b T b Tσ σ

= − ⋅ + ⋅
− ⋅ ⋅ + ⋅ ⋅

.  [6] 

 
It can be observed from equations 3 and 6 that while the 
Larson-Miller approach expresses log(t) as a linear function 
of reciprocal temperature, the Manson-Haferd approach 
expresses log(t) as a linear function of straight temperature.   
However, there is another important difference: unlike the 
Larson-Miller formulation, the Manson-Haferd formulation 
does not specify that the iso-stress lines intersect at a 
specific location on the temperature scale.  This added 
flexibility of the Manson-Haferd approach makes it difficult 
to determine which approach is empirically better for 
modeling a given material’s creep behavior, since the 
Manson-Haferd formulation may fit a given database better 
than the Larson-Miller formulation due either to the 
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)

different temperature form, or the added flexibility, or a 
combination of the two.   
 

 
 

Figure 2.  Manson-Haferd creep parameterization. 
 
In the Larson-Miller formulation, the intersection point 
(1/Ta, log(ta)) could be allowed to be arbitrary rather than 
fixed at a reciprocal temperature of zero.  Now, the slope 
of each line is  
 

( ) (
log( ) log( )
1/ 1/

a

a

t t
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−
−

.  [7] 

 
With the additional assumption that the slope is a linear 
function of log(σ) (or, equivalently, log(σ) is a linear 
function of the slope), it follows that: 
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which is a generalization of equation 3, in that it 
includes a linear log(σ) term.  This formulation has 
equivalent flexibility to the Manson-Haferd formulation, 
but retains the reciprocal temperature dependence.  This 
is illustrated in Figure 3.  This parameterization will be 
denoted as the Mendelson-Roberts-Manson (M-R-M) 
parameterization. 

 

1σ

 
 

Figure 3.  M-R-M parameterization. 
 
Like Larson-Miller, the Orr-Sherby-Dorn formulation 
assumes that log(t) is a linear function of 1/T.  But, rather 
than assuming a common intersection of the lines (log(t), 
1/T) lines, an assumption of no intersection is made (parallel 
iso-stress lines; see Figure 4).   
 

 
 

Figure 4.  Orr-Sherby-Dorn creep parameterization. 
 

Finally, the Manson-Succop formulation is similar to 
Manson-Haferd in that straight temperature (vice reciprocal 
temperature) is used as the predictor of log(t), but no 
intersection of the iso-stress lines is allowed (see Figure 5). 
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Figure 5.  Manson-Succop creep parameterization. 
 
Difficulty in comparing the available model 
formulations was acknowledged by Conway in 
Reference 2 (p. 208 – 209), where he notes that 
preference for the Manson-Haferd approach “might 
appear to follow from the fact that this parametric 
approach involves one more constant than employed in 
the Dorn or Larson-Miller parameters.”  He continues, 
“Unfortunately, it is not possible to view a set of stress-
rupture data, complete with several isotherms, and tell at 
a glance which parametric approach would be the best to 
use.”  The common framework for data analysis 
presented in this paper allows for objective, quantitative 
comparison of the applicability of the different model 
formulations, which properly accounts for the number of 
parameters fit in each formulation. 
 
2.0 COMMON GENERAL LINEAR MODEL 
 
As noted above, modeling a material database is often 
treated as a two-step process, with the first step 
normalizing the data to an iso-stress condition and the 
second step fitting a temperature dependence.  A more 
direct view of a creep experiment is as a simple input-
output system, in which the inputs are the variables that 
are controlled by the experimenter, namely temperature 
and stress, and the output is the measured quantity in the 
experiment, namely time to rupture or 1% strain.  This 
direct view clarifies the relationship between applied 
experimental conditions and the measured response, and 
suggests the most direct way of applying statistical 
analysis to the problem of estimating model parameters.  
Statistical fitting is based on the response variable, t, 
with the applied conditions (temperature T and applied 
stress σ) treated as predictor variables in a regression 
model.  

From the results of the last section it can be seen that each 
of the engineering creep parameterizations is a special case 
of one of the following linear models: 

)log(t
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The parameters β0, β1, β2, and β3 can be estimated from 
creep data, or some of the parameters can be forced to equal 
zero.  Specifically, assuming a power law stress 
dependence, the common formulations can be interpreted as 
follows: 

- Larson-Miller uses Equation 10, with the 
parameter β2 fixed at zero; 

- Orr-Sherby-Dorn uses Equation 10, with the 
parameter β3 fixed at zero; 

- Manson-Haferd uses Equation 11 (no 
parameters fixed at zero); 

- Manson-Succop uses Equation 11, with the 
parameter β3 fixed at zero. 
 
In addition, the M-R-M approach falls into this framework, 
using Equation 10 with no parameters fixed at zero.  This 
approach allows the same degree of flexibility of the 
Manson-Haferd approach, but with a reciprocal temperature 
dependence vice a straight linear temperature dependence.  
This reciprocal temperature dependence may be desirable, 
since Arrhenius-type, solid state diffusion is involved, even 
if not rate controlling, in most creep mechanisms. 
 
2.1 Maximum Likelihood Estimation Of Model Parameters 
 
The parameters β0, β1, β2, and β3 can be estimated from 
creep data, using the method of maximum likelihood 
estimation (MLE).  This is an established statistical 
methodology, with well-understood statistical properties 
based on asymptotic theory (see, e.g., Reference 3).   In 
particular, the MLE method is asymptotically efficient, 
meaning that for large datasets, no other estimation 
procedure will yield more precise model parameter 
estimates.  Furthermore, formal quantitative inferences can 
be made through MLE theory, such as confidence interval 
estimation of model parameters and hypothesis tests to 
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determine the statistical significance of individual model 
terms.  By comparing the optimized likelihood function 
for different formulations (based on the different 
engineering creep parameters), the goodness-of-fit of the 
formulations can be objectively and quantitatively 
compared.   
 
MLE has the advantage of readily being able to 
accommodate censored data, which can occur in two 
distinct forms.  Right-censored data, or runouts, are 
specimens that have not ruptured (or reached the 
specified 1% strain condition) at the conclusion of the 
experiment; all that can be stated about such specimens 
is that their rupture time is longer than the test duration.  
Left-censored data arise from an experiment in which 
the lack of in-situ monitoring prevents direct observation 
of rupture time (or time to 1% strain).  If specimens are 
tested for a fixed time t, and are found to be ruptured at 
the conclusion of the test, all that can be stated is that 
their lifetimes were less than the fixed test duration t. 
 
MLE requires that the form of the random variability 
distribution describing data scatter around the best-
estimate creep model be specified (e.g., log-normal, 
Weibull, etc.).  Although this specification is an a priori 
assumption, it can be critically evaluated based on 
analysis of residuals from the fitted model to ensure that 
the assumption is warranted for a given database.  
Standard statistical software is available for fitting linear 
models via MLE, including the incorporation of 
censoring.  For the analyses presented herein, SAS 
PROC LIFEREG was used to fit the models and perform 
statistical inferences.  A lognormal probability model 
was assumed for scatter in the response t; this 
distribution was subsequently shown to adequately 
represent the database (as shown in the following 
section). 
 
In general, maximum likelihood estimation is based on 
optimizing the likelihood function L, which is defined 
for a database of n individual specimen tests as  
 

 ( ;
n

i iL L t )
1i

θ
=

=∏ ,   [12] 

 
where θ represents a vector of fitting parameters.  The 
estimates of θ are the parameter values that maximize 
the likelihood function.  The contribution to the 
likelihood function for the ith specimen depends on 

whether the specimen is an exact time, a right-censored 
time, or a left-censored time.  Specifically, 
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where f(ti, θ) and F(ti, θ) are the probability density function 
(PDF) and the cumulative distribution function (CDF) 
corresponding to the assumed probability model, 
respectively.  For fitting the models of Equation 10 and 
Equation 11, with a log-normally distributed time response, 
the PDF is given by  
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where x denotes either temperature T or reciprocal 
temperature 1/T, as appropriate, and γ represents the 
residual standard deviation (which quantifies the data 
scatter in log(t) space).  The parameter vector θ consists of 
the regression parameters β0, β1, β2, and β3, and the residual 
standard deviation γ.  The CDF is given by  
 

( ; ) ( ; ) log( )it

it f y d yθ θ
−∞

= ∫F .   [15] 

 
In practice, it is numerically more convenient to maximize 
the natural logarithm of Equation 12; the individual 
specimens’ contributions to the log-likelihood function are 
additive.  The optimized log-likelihood values can be used 
to compare two models, if one model represents a restriction 
of the other.  Specifically, twice the difference in negative 
log-likelihood (denoted here as -2LL) is asymptotically 
distributed as a chi-squared distribution with degrees of 
freedom equal to the number of parameters fixed in the 
restricted model relative to the unrestricted model, under the 
null hypothesis of adequacy of the restricted model to 
represent the underlying material behavior.  The 
unrestricted model can be considered a statistically 
significant improvement relative to the restricted model (at 
the 0.05 level) if the difference in -2LL exceeds the 95th 
percentile of the chi-squared distribution with the specified 
degrees of freedom.  This procedure will be illustrated in 
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the next sections, which present analysis of two specific 
material databases. 
 
3.0 APPLICATION TO ALLOY 617  
 
Alloy 617 is a Ni-Cr-Co-Mo alloy that has good high 
temperature properties, in particular creep strength.  It 
was chosen as the focus of an effort in the early 1980’s 
to draft a Code Case for the ASME Boiler and Pressure 
Vessel Code, Section III, Elevated Temperature, because 
it was a leading candidate of designers, and there existed 
a considerable material properties database at the 
temperatures of interest.  A property data package 
compiled by Bassford, Reference 4, was used by the 
ASME Task Force – Very High Temperature Design for 
the development of the Code Case.  The Code Case 
effort for Alloy 617 was suspended in the late 1980’s 
when the Department of Energy canceled the Very High 
Temperature Reactor Project and funding for the Code 
Case effort ceased.  The Reference 4 data tables were 
obtained from the ASME Boiler & Pressure Vessel 
(B&PV) Committee, Subgroup on Elevated Temperature 
Design of Subcommittee on Design.  The Alloy 617 
database contains 173 exact failure time values and 62 
right-censored values (specimens for which the test was 
stopped before rupture was observed).  
 
3.1 Time To Rupture 
  
For the analysis of the Alloy 617 data, the four standard 
formulations described above were applied.  In addition, 
the M-R-M approach was evaluated.  Equations 10 and 
11 were fit to the data via the method of maximum 
likelihood estimation.  Normally distributed random 
errors were assumed in log10(t) space.  Comparisons of 
fit quality among the standard formulations and the M-R-
M formulation were made using the -2LL criterion.  The 
fitting was done with SAS PROC LIFEREG.  The 
quality of each of the five models considered is 
summarized in Table 1. 
 
From Table 1, it is apparent that the M-R-M model most 
effectively summarizes the Alloy 617 database.  The 
statistical significance of the improvement in fit of this 
model relative to the Larson-Miller model (the nearest 
competitor) can be made based on the improvement in -
2LL of the former model relative to the latter.  
Specifically, -2LL will follow (asymptotically) a chi-
squared distribution with one degree of freedom, under 
the null hypothesis of sufficiency of the Larson-Miller 

model.  The 95th percentile of the chi-squared distribution 
with one degree of freedom is 3.84; since the observed 
improvement in -2 log-likelihood afforded by the M-R-M 
model is 8.5, it can be concluded that the M-R-M  model 
provides a statistically significant improvement in fit as 
compared to the Larson-Miller model. 
 

Table 1.  Fit Summary for Alloy 617 Time To Rupture 
Formulation Model 

Form 
Parameters 

Fixed at 
Zero 

log-
likelihood* 

M-R-M Eq. [10] None -56.74 
Larson-Miller Eq. [10] β2 -60.99 
Orr-Sherby-Dorn Eq. [10] β3 -129.64 
Manson-Haferd Eq. [11] None -76.95 
Manson-Succop Eq. [11] β3 -77.71 

    * Larger (less negative) values indicate better fit to the database. 
 
The fit of the M-R-M  model is given by:  
 

10

10

10

1log ( ) 20.07 37531

1.20 log ( )
17568 log ( )

t
T

T

σ

σ

⎛ ⎞= − + ⋅⎜ ⎟
⎝ ⎠

+ ⋅

⎛ ⎞− ⋅ ⋅ ⎜ ⎟
⎝ ⎠

.  [16] 

 
This fit is displayed with the database in Figures 6(a) and 
6(b).  Blue crosses represent exact failure time data; green 
triangles represent right-censored (lower bound) failure time 
data. 
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Figure 6(a). Creep rupture life regression model.   
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Figure 6(b). Creep rupture life regression model.   
 
Figure 7 displays the measured vs. predicted log10 time 
to rupture; from this figure, it can be seen that the model 
fits the data quite well.  (It should be noted that the right 
censored data points are expected to fall – for the most 
part – below the one-to-one line.)  Figure 8 displays a 
normal probability plot of the residuals from the 
Equation 16 fit.  A normal probability plot is used to 
assess the adequacy of the normal probability 
distribution for describing data scatter.  Normally 
distributed data will fall approximately on a straight line 
in such a plot; of course, due to random variability, 
actual test data will never fall exactly on a straight line.  
By evaluating the trend exhibited by the residuals in 
Figure 8, the normal probability model is judged to 
approximate the data scatter very well.  It is well to 
remember that in a creep rupture test, the specimen is 
loaded at temperature until the target applied stress is 
reached.  Then it is held constant at that level until creep 
rupture occurs.  Thus a restriction based on physical 
consideration needs to be placed on the predictor 
variable σ  in Equation 16; namely that the applied 
stress needs to be lower than the tensile strength,  
(otherwise, there will not be any subsequent creep 
rupture test to be performed).   

uS

 
Lower bound curves for time to creep rupture can be 
computed based on the fitted model (Equation 3) and the 
observed variability (“data scatter”) in measured times.  
A lower bound curve should also account for uncertainty 
in the fitted model parameters.  Accounting for 
uncertainties creates a lower bound that is backed-off 
from the best estimate log10(t) by a different amount at 

different stress-temperature combinations; this is due to the 
fact that the propagation of uncertainties depends on the 
degree to which the model is extrapolated relative to the 
database.  However, for simplicity of application, a constant 
back-off is preferable. 
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Figure 7.  Actual vs. predicted log10(time-to-rupture).  
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Figure 8.  Normal probability plot of the residuals from the 
regression fit of time to creep rupture.   
 
To support the flight conditions of Project Prometheus the 
creep model was limited to temperatures between 800 and 
1200 K and lifetime extrapolations of no more than 175,000 
hours (approximately 20 years).  Furthermore, the stress is 
limited to 500 MPa, which would allow an adequately 
conservative maximum prediction standard error, subject to 
the above lifetime and temperature restrictions, to be 
obtained.  It is noted that the creep rupture data cover 
temperatures in the range 866K to 1366K, and the longest 
rupture time in the database was 28,735 hours. 
 
Generally, extrapolation of the regression model or the 
lower prediction bound to combinations of applied stress, 
temperature and time beyond those represented in the 
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database carries substantial risk, since no empirical 
validation of the fitted model with actual test data is 
possible at such conditions.  However, some degree of 
extrapolation will almost surely be required from the 
accelerated test conditions when the regression model is 
used for design purposes, as was performed for the 
interim design curves developed for Project Prometheus 
pre-conceptual design.  The lower bound curves do 
account for some of the uncertainties, but not necessarily 
the validity of the fitted model itself, in extrapolating 
outside of the data range.  Care must be exercised to 
ensure that any required extrapolation yields physically 
reasonable predictions, if the model is extrapolated far 
from the database.  This is especially true when inverting 
the model in Equation 16 to predict stress required for a 
specified time to rupture at a given temperature.  In this 
case, using the tensile strength to set an upper bound on 
the creep rupture stress, as discussed above, would be 
recommended. 
 
Over the selected range of time, temperature, and stress 
described above, the maximum prediction standard error 
(due to uncertainty in estimated model parameters) is 
0.157.  This standard error is expressed in log10(t) space; 
exponentiation (base 10) converts this back to the raw 
time space as a relative standard error of 2.08x on 
predicted times.  Combined with a residual standard 
deviation of 0.319 (2.08x in time), this yields an overall 
predictive standard deviation of 0.356 (2.27x in time); 
this is the root-sum-square of the prediction standard 
error and residual standard deviation.  This predictive 
standard deviation can be applied over the entire 
restricted range of time, temperature, and stress; it will 
be slightly conservative at some locations in that space.  
A 100 P percent lower prediction bound on log10(t) can 
be computed as 
 

10 10

10

1log ( ) 20.07 37531 1.20 log ( )

17568 log ( ) 0.356

t
T

z
T

σ

σ

⎛ ⎞= − + ⋅ + ⋅⎜ ⎟
⎝ ⎠
⎛ ⎞− ⋅ ⋅ − ⋅⎜ ⎟
⎝ ⎠

 [17] 

 
where z denotes the 100 Pth percentile of the standard 
normal distribution.  Values of z for various coverage 
probabilities are displayed in the Table 2. 
 
For example, a 95% lower bound on log10(t) would be 
computed as      

 

10 10

10

1log ( ) 20.66 37531 1.20 log ( )

17568 log ( )

t
T

T
σ

⎛ ⎞= − + ⋅ + ⋅⎜ ⎟
⎝ ⎠
⎛ ⎞− ⋅ ⋅ ⎜ ⎟
⎝ ⎠

σ
 [18] 

 
If desired, this can be rearranged to form a 95% lower 
bound on log10(σ) as a function of t and T, as follows: 
 

10

10

1log ( ) 20.66 37531
log ( )

11.20 7568

t
T

T

σ

⎛ ⎞+ − ⋅ ⎜ ⎟
⎝ ⎠=

⎛ ⎞− ⋅ ⎜ ⎟
⎝ ⎠

, r minS

.    [19a] 

 
This equation can be rearranged to arrive at the 95% lower 
bound creep rupture stress, , as: 

       
,min

37531 20.66  
7568 1.20 7568 1.2010 ,

r

T T
T T

u

S Lesser of

t MPa S
−⎛ ⎞ −

⎜ ⎟−⎝ ⎠ −

=

⎧ ⎫ .   [19b] ⎪ ⎪⋅⎨ ⎬
⎪ ⎪⎩ ⎭

800 K 1200 K,
0 175,000 hours

T
t

 
subject to the conditions 
    

≤ ≤
< ≤

.          [19c] 

 
Table 2.  Standard Normal Coverage Multipliers 

P z 
0.5 0.000 

0.75 0.674 
0.8 0.842 

0.85 1.036 
0.9 1.282 

0.95 1.645 
0.99 2.326 

 
3.2 Time to 1% Strain 
 
For the time to 1% strain response (this is the total 
mechanical strain which includes elastic and inelastic 
strains), the Alloy 617 database contains 115 exact failure 
time values, 18 right-censored values (specimens for which 
the test was stopped before 1% strain was observed), and 18 
left-censored values (specimens for which strains greater 
than 1% were observed, for which the 1% strain time is not 
known precisely, but only bounded above).  The 18 left-
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censored values behaved very differently from the 
remainder of the database, and were excluded from the 
analysis.  Although there is no record of incorrect test 
method or other issues that call these data into question, 
their lack of agreement with the remainder of the 
database is taken as sufficient justification to eliminate 
them from the analysis.  This elimination must be 
considered as adding risk to the analytical results, in the 
sense that the fit to the remainder of the database will 
predict longer times to 1% strain than reported for the 
left-censored specimens.  It should be noted, however, 
that the left-censored specimens corresponded to high 
stress levels (in excess of 240 MPa); since it is expected 
that the creep model may limit performance at low stress 
levels, this limits the practical impact of the data 
elimination to some extent.  The eliminated data will be 
discussed further below. 

10

10

1log ( ) 11.69 27018

5.77 log ( )

t
T

σ

⎛ ⎞= − + ⋅⎜ ⎟
⎝ ⎠

− ⋅

 
The quality of each of the five models considered is 
summarized in Table 3.  From Table 3, it is apparent that 
the M-R-M  model most closely summarizes the 
behavior of the Alloy 617 database.  However, the 
statistical significance of the improvement in fit of this 
model relative to the Orr-Sherby-Dorn model (the 
nearest competitor) yields an observed improvement in -
2LL of 0.54, which is not statistically significant at the 
0.05 level.  (That is, the magnitude of this slight 
improvement in fit can be explained purely by the 
random variability exhibited by the data.)  Therefore, in 
the interest of making a simpler model and avoiding 
unnecessary terms in the model (which are undesirable 
for reasons of practical applicability and numeric 
stability of parameter estimation), the Orr-Sherby-Dorn 
model is selected as the most appropriate summary of 
the observed material behavior.   
 
Table 3.  Fit Summary for Alloy 617 Time To 1% Strain 

Formulation Model 
Form 

Parameters 
Fixed at Zero 

log-
likelihood*

M-R-M Eq. [10] None -111.35 
Larson-Miller Eq. [10] β2 -122.83 
Orr-Sherby-Dorn Eq. [10] β3 -111.62 
Manson-Haferd Eq. [11] None -116.26 
Manson-Succop Eq. [11] β3 -127.00 
    * Larger (less negative) values indicate better fit to the database. 
The fit of the Orr-Sherby-Dorn model is given by: 
 

 .  [20] 

 
The Orr-Sherby-Dorn fit is displayed with the database in 
Figures 9(a) and 9(b).  The blue symbols (crosses) represent 
exact failure time data; the green symbols (triangles) 
represent right-censored (lower bound) failure time data; the 
red symbols (inverted triangles) represent left-censored 
(upper bound) failure time data.  It can be seen from these 
figures that the model provides an unbiased fit to the 
majority of the database.  The left-censored values, which 
were eliminated from the database for the fitting of 
Equation 20, are not well predicted.  However, Figure 10 
shows a different view of this plot, from which it can be 
seen that several exact failure and right-censored data points 
fall in the same stress-temperature range as the eliminated 
left-censored points.  The discrepancy between the left-
censored points and the remainder of the database therefore 
cannot be explained by a misspecification of the regression 
model.  The lack of smooth transition between the left-
censored points and the remainder of the database was a 
primary factor in the decision to eliminate those values from 
the regression modeling.  As noted above, this elimination 
involves some risk, but it is judged to provide the most 
believable summary of this creep response.   
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Figure 9(a). Time to 1% creep strain regression model. 
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Figure 9(b). Time to 1% creep strain regression model. 
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Figure 10. Time to 1% creep strain regression model.  
functional model form chosen to summarize the data. 
 
Figure 11 displays a plot of measured vs. predicted log10 
time to 1% strain.  The right-censored points (shown in 
green) falling largely below the one-to-one line are 
consistent with the fitted model.  The left-censored 
points (shown in red) are not consistent with the model, 
as explained above.  Figure 12 displays a normal 
probability plot of the residuals from the fit of Equation 
20; based on the approximately linear behavior exhibited 

in this plot, the normal model is adequate for summarizing 
the variability observed in the test data. 
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Figure 11.  Actual vs. predicted log(time-to-1%-strain). 
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Figure 12.  Normal probability plot of the residuals from 
the regression fit of time to 1% creep strain, excluding the 
left-censored values.  
 
It is noted that the concept of time to 1% strain under creep 
condition is not valid when the preload induces an initial 
strain greater than 1% in the specimen.  Thus, a restriction 
should be placed on the predictor variable σ  in Equation 20 
such that it is less than the flow stress at 1% total strain, as 
determined from the stress-strain curve at temperature. 
Although there is uncertainty as to which flow curve should 
be used because they are sensitive to strain rates (or stress 
rates) at very high temperatures, an adequately conservative 
restriction would be to use the yield strength to restrict the 
values of σ  in Equation 20.  A value of 350 MPa is 
selected to determine the lower bound values of time to 1% 
strain.  
 
The maximum prediction standard error on log10(t) over the 
range 800 K ≤ T ≤ 1200 K, t  ≤ 175,000 hours, and σ < 350 
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MPa is 0.419 (2.62x in time).  The residual standard 
deviation is 0.591 (3.90x in time).  The combined 
predictive standard deviation based on these two 
components is 0.724 (5.30x in time).  A 100·P percent 
lower prediction bound on log10(t) can be computed as 
 

10
1log ( ) 11.69 27018

5.77 log ( ) 0.724

t
T

zσ

⎛ ⎞= − + ⋅⎜ ⎟
⎝ ⎠

− ⋅ − ⋅10

 .   [21] 

 
For example, a 95% lower prediction bound on log10(t) 
is  
 

10
1log ( ) 12.88 27018

5.77 log ( )

t
T

σ

⎛ ⎞= − + ⋅⎜ ⎟
⎝ ⎠

− ⋅ 10

,         [22] 

 
and a lower 95% prediction bound on log10(σ) can be 
derived as  
 

10 10
1log ( ) log ( )

5.77
12.88 27018 1
5.77 5.77

t

T

σ = − ⋅

− + ⋅
.  [23a] 

 
This equation can be rearranged to arrive at the 95% 
lower bound stress-to-1%-strain, , as: 1%,minS
 

1%,min

27018 12.88  1
5.77 5.7710 ,

T
T

y

S Lesser of

t MPa S
−⎛ ⎞ −

⎜ ⎟
⎝ ⎠

=

⎧ ⎫⎪ ⎪⋅⎨ ⎬
⎪ ⎪⎩ ⎭

.     [23b] 

 
subject to the conditions 
 

800 K 1200 K,
0 175,000 hours

T
t

≤ ≤
< ≤

.    [23c] 

 
The prior explanation of risks of extrapolating the time 
to rupture model apply equally to the time to 1% strain 
model (Equation 20) and its associated lower prediction 
bound (Equation 21).   In particular, use of the inverted 
form, Equation 23, requires careful consideration on the 
part of the user to ensure that the model does not predict 
physically unrealistic stresses. 
 

4.0 APPLICATION TO ALLOY 230  
 
4.1 Time to Rupture 
 
A database of Alloy 230 creep test results was obtained 
from Reference 5.  The Alloy 230 database contains 142 
exact rupture time values and 75 right-censored values 
(specimens for which the test was stopped before rupture 
was observed).  The quality of fit of each of the five models 
considered is summarized in Table 4.  From Table 4, it is 
apparent that the M-R-M model most effectively 
summarizes the Alloy 230 database.  The improvement in 
fit of this model relative to the Manson-Haferd model (the 
nearest competitor) can be made based on the -2LL 
criterion, as described above.  That is, the magnitude of the 
improvement in fit of the M-R-M model relative to the other 
models is sufficiently large that it cannot be explained 
purely by the random variability exhibited by the database.   
 

Table 4.  Fit Summary for Alloy 230 Time To Rupture 
Formulation Model 

Form 
Parameters 

Fixed at Zero 
log-

likelihood*
M-R-M Eq. [10] None 25.36 
Larson-Miller Eq. [10] β2 -58.66 
Orr-Sherby-Dorn Eq. [10] β3 -136.23 
Manson-Haferd Eq. [11] None -4.31 
Manson-Succop Eq. [11] β3 -75.80 

    * Larger (less negative) values indicate better fit to the database. 
 

The fit of the M-R-M model is given by:  
 

10 10

10

1log ( ) 26.27 44158 4.72 log ( )

111337 log ( )

t
T

T
σ

⎛ ⎞= − + ⋅ + ⋅⎜ ⎟
⎝ ⎠
⎛ ⎞− ⋅ ⋅ ⎜ ⎟
⎝ ⎠

σ
[24] 

 
This fit is displayed with the database in Figure 13.  Figure 
14 displays the measured vs. predicted log10 time to rupture; 
from this figure, it can be seen that the model fits the data 
quite well.  Figure 15 displays a normal probability plot of 
the residuals from the Equation 24 fit; based on this plot, the 
normal probability model can be seen to approximate the 
data scatter reasonably well.  Figure 16 displays the 
residuals from the fit against one of the two predictor 
variables in the model, namely log10(σ); from this figure, it 
can be observed that there is some lack-of-fit in the stress 
dependency of the fitted model (Equation 24).  In particular, 
there appears to be some nonlinearity in the residual plot.  
Although it would be possible to formulate a regression 
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model form more general than any summarized in Table 
4, there would be considerable risk in extrapolating such 
a model to lower stresses.  Therefore, the model of 
Equation 24 is recommended, despite its slight 
deficiencies. 
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Figure 13. Creep rupture life regression model.   
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Figure 14.  Actual vs. predicted log10(time-to-rupture). 
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Figure 15.  Normal probability plot of the residuals from 
the regression fit of time to creep rupture.  
 
Similarl to the consideration for the Alloy 617 database, a 
95% lower prediction bound on log10(rupture time), subject 
to the conditions of 800 K ≤ T  ≤ 1200 K, 0 < t  ≤ 175,000 
hr, σ  ≤ 500 MPa, is given as 
 

10

10

10

1log ( ) 26.64 44158

4.72 log ( )
111337 log ( )

t
T

T

σ

σ

⎛ ⎞= − + ⋅⎜ ⎟
⎝ ⎠

+ ⋅

⎛ ⎞− ⋅ ⋅ ⎜ ⎟
⎝ ⎠

, r minS

  [25a] 

 
This equation can be rearranged to arrive at the 95% lower 
bound creep rupture stress, , as: 

       
,min

44158 26.64  
11337 4.72 11337 4.7210 ,

r

T T
T T

u

S Lesser of

t MPa S
−⎛ ⎞ −

⎜ ⎟−⎝ ⎠ −

=

⎧ ⎫ .      [25b] ⎪ ⎪⋅⎨ ⎬
⎪ ⎪⎩ ⎭

800 K 1200 K,
0 175,000 hours

T
t

 
with the conditions 
 

≤ ≤
< ≤

.  [25c]       

 
The magnitude of the selected offset does lower bound the 
majority of the residuals displayed in Figure 16 (the purple 
symbols), so the lower bound is considered appropriately 
conservative in spite of the model deficiencies.  The 
majority of the ruptured specimens would be bounded by a 
95% lower prediction bound (which would appear on this 
plot as a horizontal line at a height of approximately 
residual = – 0.37).  It is noted that the creep rupture data 
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cover temperatures in the range 866K to 1422K, and the 
longest rupture time in the Alloy 230 database was 
39,044 hours. 
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Figure 16.  Residuals from the rupture fit vs. applied 
stress.   
 
4.2 Time to 1% Strain 
 
The Alloy 230 database contains 199 exact time-to-one-
percent-strain values and 18 right-censored values 
(specimens for which the test was stopped before 1% 
strain was observed).   
 
The quality of fit of each of the five models considered 
is summarized in Table 5.  Comparing the log-likelihood 
values from Table 5, it is apparent that the M-R-M model 
most closely summarizes the behavior of the Alloy 230 
database.  The Manson-Haferd model is a close 
competitor, but is not as effective as the M-R-M model 
for this database. 
 
Table 5.  Fit Summary for Alloy 230 Time to 1% Strain 

Formulation Model 
Form 

Parameters 
Fixed at Zero 

log-
likelihood*

M-R-M Eq. [10] None -142.05 
Larson-Miller Eq. [10] β2 -156.29 
Orr-Sherby-Dorn Eq. [10] β3 -201.86 
Manson-Haferd Eq. [11] None -144.09 
Manson-Succop Eq. [11] β3 -171.41 
    * Larger (less negative) values indicate better fit to the database. 
 
The fit of the M-R-M model is given by: 
 

10 10

10

1log ( ) 21.78 37336 3.16 log ( )

19320 log ( )

t
T

T
σ

⎛ ⎞= − + ⋅ + ⋅⎜ ⎟
⎝ ⎠
⎛ ⎞− ⋅ ⋅ ⎜ ⎟
⎝ ⎠

σ
.[26] 

 
This fit is displayed with the database in Figure 17.  Figure 
18 displays the measured vs. predicted log10 time to rupture; 
from this figure, it can be seen that the model fits the data 
reasonably well.   However, there is considerably more 
scatter in the data than was the case for the rupture time 
model for this material presented previously.  Figure 19 
displays a normal probability plot of the residuals from the 
Equation 25 fit; based on this plot, the normal probability 
model can be seen to approximate the data scatter 
reasonably well.  Figures 20(a) and 20(b) display the 
residuals from the fit against log10(σ) and temperature (K).  
Lack-of-fit is evident in these residual plots, similar in 
character to that displayed by the rupture time fit, but 
considerably greater in magnitude.  As with the rupture time 
fit, the M-R-M model is recommended, despite its 
deficiencies.  Again, this is because no other functional 
form is known that could summarize the data more 
effectively and be relied upon to extrapolate reasonably to 
lower stress values. 
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Figure 17. Time to 1% total strain regression model. 
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Figure 18.  Actual vs. predicted log10(time-to-1%-
strain). 
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Figure 19.  Normal probability plot of the residuals from 
the regression fit of time to 1% total strain.   
Similar to the consideration for the Alloy 617 database, a 
95% lower prediction bound on the time to 1% strain (in 
log10 space), subject to the conditions of 800 K ≤ T  ≤ 
1200 K, 0 < t  ≤ 175,000 hr,  ≤ 400 MPa, is given as σ
 

10 10

10

1log ( ) 22.60 37336 3.16 log ( )

19320 log ( )

t
T

T

σ

σ

⎛ ⎞= − + ⋅ + ⋅⎜ ⎟
⎝ ⎠
⎛ ⎞− ⋅ ⋅ ⎜ ⎟
⎝ ⎠

. [27a] 

 
This equation can be rearranged to arrive at the 95% 
lower bound stress-to-1%-strain, , as: 1%,minS
 

      
1%,min

37336 22.60  
9320 3.16 9320 3.1610 ,

T T
T T

y

S Lesser of

t MPa S
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⎬
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0 175,000 hours

T
t

.     [27b] 

 

subject to the conditions 
 

≤ ≤
< ≤

.  [27c]       

 
The selected magnitude of offset does lower bound the 
majority of the residuals displayed in Figure 20 (the purple 
symbols), so the lower bound is considered appropriately 
conservative in spite of the model deficiencies.  The 
majority of the ruptured specimens would be bounded by a 
95% lower prediction bound, which would appear on these 
residual plots as a horizontal line at a height of 
approximately –0.82.  An exception to this is combinations 
of temperature greater than 1300 K and stress less than 20 
MPa, where some observed times to 1% strain were less 
than the 95% lower prediction bound.   
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Figure 20. Residuals from the 1% strain fit vs. temperature 
(upper), and applied stress (lower).   
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5.0 REASONABLENESS OF PARAMETERS 
 
While the M-R-M approach is empirical, the equation 
form encompasses both an apparent activation energy 
term: ( )1 1 / Tβ ⋅ , as well as a stress-activation energy 
interaction term: ( )3 10log ( ) 1 / Tβ σ⋅ ⋅ .  Realistic 
activation energies lend confidence to these 
extrapolations and can give some insight into the 
mechanism or mechanisms that control creep damage.  
In order to assess the reasonableness of the M-R-M 
method, the minimum and maximum apparent activation 
energies were estimated for both the Alloy 617 and 
Alloy 230 failure data, using the minimum and 
maximum stresses in the database.  As shown in Table 6, 
the maximum apparent activation energies for creep in 
both Alloy 617 (262 kJ/mol) and Alloy 230 (322 kJ/mol) 
are consistent with either the self diffusion of nickel 
(~290 kJ/mol) or some slow diffusing solute (e.g. 
tungsten diffusion in nickel with an activation energy of 
~299 kJ/mol).  The apparent activation energies are 
decreased as the applied stress increases, but even at the 
highest levels tested (~ 550MPa), they remain positive 
and physically realistic. 
 

Table 6.  Comparison of the Apparent Activation 
Energies for Creep and Substitutional Diffusion in Ni 

 Apparent Activation 
Energy (kJ/mol) 

 Maximum Minimum 
Reference 

IN 617 262 140 This Work 
Haynes 230 322 108 This Work 

Ni Self Diffusion 290 
W Diffusion in Ni 299 

[6] 

 
5.1 Comparisons 
 
In Section II, Part D, Subpart 1B of the ASME B&PV 
Code, Reference 7, the maximum allowable stress 
values, , for Alloy 617 and Alloy 230 are tabulated for 
Section I and Section VIII, Division 1 applications for 
non-nuclear components.  The  values are determined, 
per the Mandatory Appendix 1 of Reference 7, as the 
smallest of: 

S

S

 
• 100% of the average stress to produce a creep 

rate of 0.01%/1,000 hr 
 

• 100% of the average stress to cause rupture at the 
end of 100,000 hr 

 
• 80% of the minimum stress to cause rupture at the 

end of 100,000 hr 
 
Although there is no indication in the stress tables as to 
which of the three criteria controls the  value at a specific 
temperature, it is generally considered that 80% of the 
minimum creep rupture strengths at 100,000 hours governs 
the  values at higher temperatures.  Figure 21 compares 
the values of  for Alloy 617 from Equation 19b at 
100,000 hours to those from the Stress Tables of Reference 
7.  The minimum creep rupture strengths at 100,000 hours 
from the Draft Alloy 617 Code Case, Reference 8, are also 
shown in Figure 21.  The comparison is quite good, 
particularly at high temperatures.  Similar comparison is 
shown in Figure 22 for Alloy 230 and they compare 
reasonably well at high temperatures.  

S

S
, r minS
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Figure 21.  Alloy 617. Comparison of (i) 100,000 hour 95% 
lower bound creep rupture strength from the present work; 
(ii) 1.25 times maximum allowable stress value ( ) from 
ASME B&PV Code for Section I and Section VIII Div 1 
applications, and (iii) 100,000 hour minimum creep rupture 
strength from Alloy 617 Draft Code Case.  

S
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6.0 CONCLUSIONS 
 
By viewing engineering creep parameters within the 
framework of a common underlying statistical 
framework, many advantages are realized.  The models 
can be fit to a database in a statistically efficient way, 
and compared to one another with objective and 
quantified statistical procedures.  Censored data can be 
accommodated in a straightforward and rigorous way.  
The question of the appropriate form of the temperature 
dependence (straight temperature or reciprocal 
temperature) can be separated from the question of 
interaction between stress and temperature 
dependencies.  However, reciprocal temperature fits for 
Alloy 617 and Alloy 230 give reasonable apparent 
activation energies.  Probabilistically interpretable lower 
bounds can be generated from the fitted models.  These 
advantages have been illustrated with application to the 
commercial materials Alloy 617 and Alloy 230. 
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