Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

(Agreement #: 10030)*

Oak Ridge National Laboratory: W.P. Partridge (PI), J.-S. Choi, J. Parks

<u>Cummins Inc</u>.: N. Currier (PI), A. Yezerets, M. Ruth, S. Whitacre, M. Cunningham, K. Kamasamudram

> Presenter: Bill Partridge partridgewp@ornl.gov

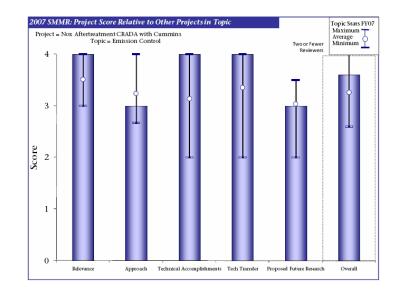
Vehicle Technologies Program Annual Merit Review February 26, 2008, Bethesda, MD

> U.S. DOE Program Management Team: Ken Howden, Gurpreet Singh, Steve Goguen

*This presentation does not contain any proprietary or confidential information.

Assist Cummins in addressing barriers to transportation-market penetration of fuel-efficient diesel engines

& by doing so generate useful knowledge and enable products with broad public benefit


Major Focus for FY2008:

- Oil Dilution (from engine-managed catalyst regeneration)
- LNT-Catalyst Ammonia Chemistry

National Laboratory

Guidance from FY 2007 Review

- Feedback was very positive
- Highest score achieved in three areas
 - Relevance
 - Technical Accomplishments
 - Tech Transfer
- "A useful industry partnership that has shown good progress and results."
- No weaknesses or recommendations were cited.
- Previous review recommendations:
 - Using fully formulated catalyst (implemented in '07)
 - Quantifying H_2S , NH_3 , N_2O and SO_2 distributions (implemented in '07 except NH_3)
 - Major effort in FY2008 to quantify NH₃ chemistry

CRADA Addresses Multiple DOE\VT Barriers

Oil Dilution (Engine System Section)

- Can result from emissions control system management and operation
- Oil dilution can cause durability issues
- Conventional methodologies slow development

LNT Ammonia Chemistry (Instrumentation & Bench Section)

- NH₃ must be controlled in viable catalyst systems:
 - Avoid NH₃ slip
 - Manage generation and utilization in LNT and hybrid LNT-SCR systems

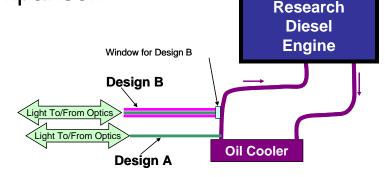
Specific DOE\VT Multi-Year Program Plan Barriers Addressed :

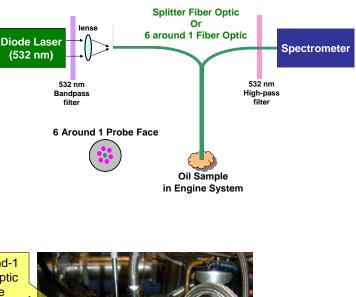
- *'Emissions*. The key barriers ... incomplete development of aftertreatment technology, especially for NOx;.."
- 'Durability. .. system has to perform effectively for 120,000 miles...

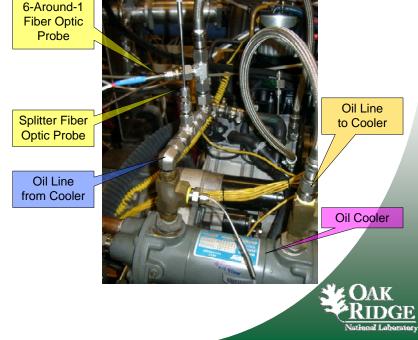
Oil Dilution Research

Conventional methodologies:

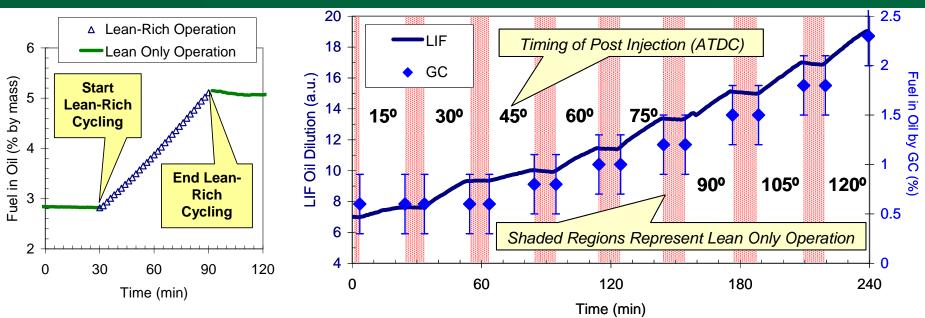
- bottleneck development
- require extractive sampling
- off-line (often off-site) analysis


Performance measures designed to streamline development:


- Fast measurement ~15 min
- On-engine measurements
- Real-time feedback



Approach – Oil Dilution


- Inexpensive & compact laser-pointer sources
- Fluorescence of commercial diesel-fuel dye
- Two fiber-based designs implemented
- Sample-point agile optical fiber design
- Engine-cell safe closed system design
- Demonstrate on ORNL research diesel
 - Flexible engine control system
- Extract samples for ASTM method comparison

Results - Oil Dilution

- Slope indicates relative oil dilution rate
- Real-time on-engine feedback of oil dilution
 - ~ <15 min feedback time
- Laser-Induced Fluorescence (LIF) method
 - trends with ASTM
 - more sensitive than ASTM
- LIF Oil Dilution diagnostic realizes performance measures

LNT Ammonia Chemistry Research

Performance Measures – LNT Ammonia Chemistry

Ammonia is relevant to diesel product development:

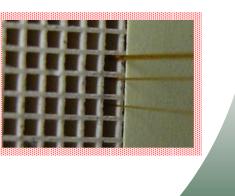
- NH₃ slip management
- System design & calibration
- On-board detection of system state
- Cummins development emphasizes fundamental knowledge

Ammonia is difficult to measure w/ SpaciMS:

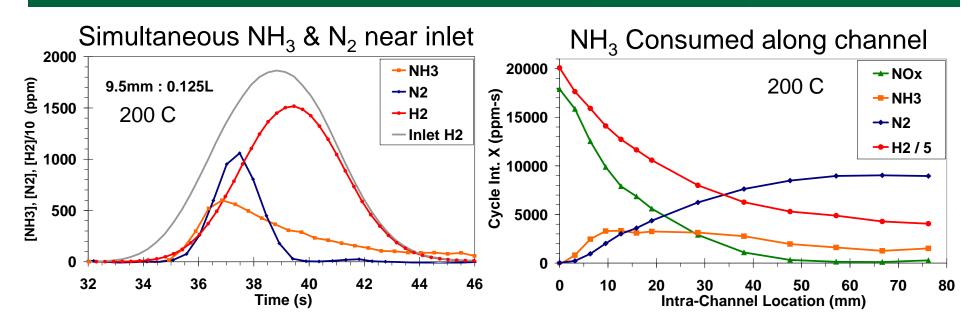
- Interferences with N₂, H₂O, NOx
- NH₃ is sticky
- Variable and different elution times

Performance Measures address diagnostic and information needs:

- Enable SpaciMS measurement of NH₃ inside operating LNT catalysts
- Map transient NH₃ distribution through catalyst
- Clarify NH₃ formation and utilization in LNT chemistry

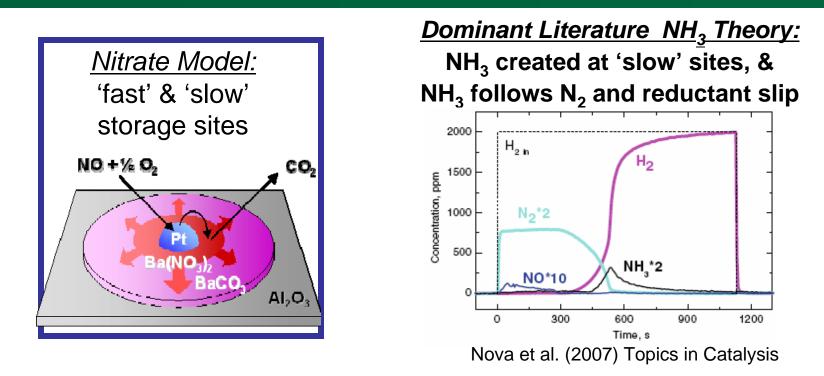

Approach – LNT Ammonia Chemistry

- Catalyst core (3/4" x 3") on bench reactor
- Washcoat: Pt/Ba/Al₂O₃ model catalyst
 - No cerium oxygen-storage component
- CLEERS standard short cycling:
 - 60-s lean: 300ppm NO + 10% O₂
 - 5-s rich: 2% H₂
 - Common: 5% H_2O + 5% CO_2 + Ar balance



- Resolve species distributions along catalyst channel
 - SpaciMS
 - NH₃ generation and utilization
 - NOx, N_2 and H_2
- Analyze distributed performance
 - Phase/timing of species puffs
 - Selectivity

Results - LNT Ammonia Chemistry



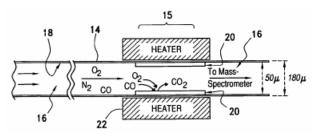
- Simultaneous N₂ & NH₃ generation at catalyst front
- NH₃ shifts to later times along catalyst length
- NH₃ consumed along catalyst length along with H₂

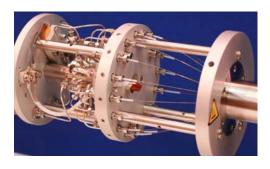
SpaciMS NH₃ measurements demonstrated Must account for NH₃ regeneration role

Results – Vis-à-vis Literature Ammonia Chemistry

- Our measurements show same sequence at outlet
- But simultaneous NH₃ and N₂ inside catalyst

NH₃ doesn't always follow N₂ Literature NH₃ model incomplete NH₃ not always from 'slow' sites


Technology Transfer


Via CRADA:

- All CRADA activities impact Cummins' product development
- CRADA instrumental in the commercialization of the 2007 Dodge Ram engine-catalyst system

Outside of CRADA:

- Coordination with CLEERS impacts broad range of DOE interests
- Delphi improved reformer-catalyst models based on SpaciMS analysis
- Multiple industry inquiries into Oil Dilution diagnostic
- Hiden Analytical marketing commercial SpaciMS
- 2007 Cummins patent expands SpaciMS capabilities

Publications, Presentations, Patents

3 Publications:

- J.-S. Choi, W.P. Partridge, J.A. Pihl, and C.S. Daw, "Sulfur and temperature effects on the spatial distribution of reactions inside a lean NO_x trap and resulting changes in global performance", *Catalysis Today*, doi:10.1016/j.cattod.2008.01.008 (2008).
- J.-S. Choi, W.P. Partridge, and C.S. Daw, "Sulfur impact on NO_x storage, oxygen storage and ammonia breakthrough during cyclic lean/rich operation of a commercial lean NO_x trap", *Applied Catalysis B:* Environmental 77, 145-156 (2007).
- Jim Parks, Bill Partridge and Shawn Whitacre "Rapid In Situ Measurement of Fuel Dilution of Oil in a Diesel Engine using Laser-Induced Fluorescence Spectroscopy," Society of Automotive Engineers paper 2007-01-4108, 2007.

4 Presentations:

- J.-S. Choi, W.P. Partridge, J.A. Pihl, and C.S. Daw, "Sulfur effects on spatiotemporal distribution of reactions in a commercial lean NO_x trap", *AIChE National Meeting*, Salt Lake City, UT, November 4-9, 2007.
- Jim Parks, Bill Partridge, and Shawn Whitacre, Rapid In Situ Measurement of Fuel Dilution of Oil in a Diesel Engine Using Laser-Induced Fluorescence Spectroscopy, presented at the SAE Powertrain and Fluid Systems Conference in Chicago, IL on October 29-31, 2007.
- J.-S. Choi, W.P. Partridge, and C.S. Daw, "Assessing a commercial lean NO_x trap performance via spatiotemporal species profile measurements", *North American Meeting (NAM) of the North American Catalysis Society*, Houston, TX, June 17-22, 2007.
- W.P. Partridge, J.-S. Choi, C.S. Daw "Distributed Impact of Sulfation on LNT Catalyst Reactions," 10th DOE Crosscut Workshop on Lean Emissions Reduction Simulation, University of Michigan, Dearborn, Michigan, May 2nd, 2007.

1 Patent:

N.W. Currier, A. Yezerets, US Patent Number US 7,211,793 B2, Mass Spectrometry System and Method, May 1, 2007.

Future Activities

Engine-Systems Section:

- Apply oil-dilution diagnostic on development V engine at Cummins (scheduled - March 2008)
- Develop and apply methods to quantify cylinder and cycle dispersion

Instrumentation & Bench Section:

- Characterize NH₃ chemistry in LNT with oxygen-storage component (Umicore, CLEERS reference catalyst)
- Characterize sulfation impact on LNT catalyst reactions, including NH₃ formation and utilization and water-gas-shift

Summary

Relevance to DOE Objectives

- Reduce fuel consumption by enabling diesel market penetration
- Approach
 - Real-time on-engine measurement of oil dilution
 - Measure evolution of NH₃ generation and utilization inside catalyst

• Technical Accomplishments

- Streamline engine calibration
- Enable SpaciMS NH₃ measurements & clarify LNT catalyst reactions
- Enable improved modeling of LNT and hybrid LNT-SCR systems
- Technology Transfer
 - Broad based transfer via Cummins products & outside CRADA
- Future Plans
 - Measure cylinder and cycle dispersion on development engines
 - Quantify distributed impact of sulfation on NH₃ LNT reactions

- Designed to address Cummins' technical barriers

for the Department of Energy