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SUMMARY

The Advanced Fuels Campaign within the Nuclear Technology Research and Development
program of the Department of Energy Office of Nuclear Energy is seeking to improve the accident
tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are one of the leading
candidate materials for fuel cladding to replace traditional zirconium alloys because of the superior
oxidation resistance of FeCrAl. However, there are still some unresolved questions regarding irradiation
effects on the microstructure and mechanical properties of FeCrAl at end-of-life dose levels. In particular,
there are concerns related to irradiation-induced embrittlement of FeCrAl alloys due to secondary phase
formation. To address this issue, Oak Ridge National Laboratory has developed a new experimental design
to irradiate shortened cladding tube specimens with representative 17x17 array pressurized water reactor
diameter and thickness in the High Flux Isotope Reactor (HFIR) under relevant temperatures (300-350°C).
Post-irradiation examination will include studies of dimensional change, microstructural changes, and
mechanical performance. This report briefly summarizes the capsule design concept and the irradiation
test matrix for six rabbit capsules. Each rabbit contains two FeCrAl alloy tube specimens. The specimens
include Generation | and Generation Il FeCrAl alloys with varying processing conditions, Cr
concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated,
and delivered to the HFIR along with a complete quality assurance fabrication package. Pictures of the
rabbit assembly process and detailed dimensional inspection of select specimens are included in this report.
The rabbits were inserted into HFIR starting in cycle 472 (May 2017).
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1. OBJECTIVE

The objective of this work is to irradiate wrought FeCrAl tubes in the High Flux Isotope Reactor
(HFIR) that have a geometry and microstructure representative of what would be used in a 17x17 array
pressurized water reactor (PWR). The FeCrAl tube specimens are to be irradiated at typical PWR
temperatures of 300-350°C at radiation doses ranging from 1.8 to >20 displacements per atom (dpa).

2. INTRODUCTION

Despite a long history of successful operation, traditional light water reactor (LWR) fuel systems
with UO; fuel and zirconium (Zr)-alloy cladding are susceptible to high-temperature steam oxidation,
hydrogen generation, and radiation-induced embrittlement, particularly after the Zr-alloy cladding forms
hydrides [1-3]. A number of advanced nuclear fuel cladding concepts are currently being investigated to
improve the accident tolerance of LWRs, primarily by identifying cladding materials with improved high-
temperature steam oxidation resistance during accident scenarios [4, 5]. Other potential benefits of
accident-tolerant fuels include enhanced fission product retention, reduced hydrogen generation, and
improved thermomechanical properties. Performance under normal operating conditions (e.g., high fuel
burnup, long fuel cycle length, high reliability) remains important for economic viability.

Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace
traditional Zr-based cladding because of their superior oxidation resistance and high-temperature strength
compared with Zr alloys [6-8]. However, FeCrAl alloys are known to experience embrittlement under
irradiation as a result of secondary-phase formations [9-11]. New information regarding the irradiation
performance of FeCrAl alloys with representative LWR geometry, microstructure, and temperature would
be invaluable for qualifying these materials for use in commercial reactors. Accelerated irradiation testing
is preferred so that a large test matrix can be evaluated and down-selection of specific alloys and processing
parameters can occur within a reasonable time and cost. This report describes the successful irradiation of
six “rabbit” capsules, each containing two FeCrAl tube specimens, in the HFIR at Oak Ridge National
Laboratory (ORNL). Two of the six rabbits have completed irradiation and are awaiting shipping before
being disassembled in a hot cell. The remaining four rabbits will finish irradiation in late calendar year
2018. The irradiated samples will allow the severity of the cladding degradation under irradiation to be
determined through post-irradiation examination (PIE), which will include mechanical and microstructural
evaluations.

3. TUBE IRRADIATION EXPERIMENT DESIGN

3.1 Summary of Capsule Design

The cladding tube specimens are packaged inside a HFIR-approved irradiation vehicle so that they
can accumulate the desired radiation dose at the design temperature. A detailed summary of the irradiation
capsule design and analysis can be found in a previous report [12]. A brief description of the capsule design
is provided here. A section view of the rabbit capsule is shown in Figure 1. Predicted temperatures for
rabbit FCF04 are shown in Figure 2. The details of the various rabbits and the test matrix are provided in
Section 3.2. The outer containment for the irradiation experiment is the rabbit capsule housing, which is
directly cooled on the outer surface by the HFIR primary coolant. Rabbits are stacked vertically inside
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aluminum (Al) targets that are placed in the flux trap (radial center region with highest neutron flux) of
the HFIR core. The specimen temperature is controlled by varying the concentration of a helium/argon
gas mixture according to the heat generated in the internal components and the size of the gas gap between
the cladding and the housing. Varying the gas mixture changes the effective thermal conductivity of the
gas gap. Neutron and gamma heating from the HFIR fuel is accurately determined using neutronics models
of the HFIR core. The cladding tube specimens are placed over molybdenum sleeves. Centering thimbles
are inserted inside the sleeves to keep the assemblies centered inside the housing and to maintain a constant
gas gap between the cladding and the housing. Wires are inserted through the thimbles and small radial
holes in the sleeves to keep the thimbles from being able to dislodge from the sleeves. Grafoil insulators
are stacked on both ends of the capsule to reduce axial heat losses. Passive silicon carbide (SiC)
temperature monitors are placed inside slots that are machined near the inner surfaces of the sleeves. These
SiC temperature monitors are used to determine the actual irradiation temperature using a dilatometric
technique [13].

Centering
thimbles

Housing

Figure 1. Section view showing irradiation capsule design concept.
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Figure 2. Temperature (°C) contours for the FCFO04 rabbit assembly (left), bottom FeCrAl specimen
(bottom right), and top FeCrAl specimen (top right).

3.2 Irradiation Test Matrix

The irradiation test matrix shown in Table 1 includes a variety of FeCrAl alloys. The irradiation
positions correspond to the HFIR grid position (see reference [12]) followed by the axial position
(numbered 1-7 from bottom to top, with position 4 located at the core midplane). The specimen part
numbers are in the format XMNY or XMMNY, where X indicates the alloy series, M (or MM) the
chromium (Cr) concentration (mass percent), N the Al concentration (mass percent), and Y a minor
alloying element. “B” series alloys are model FeCrAl alloys (Generation 1) that span a wide range of Cr
concentrations. These alloys have the XMMNY format. In this case, MM refers to the Cr concentration.
For example, B136Y refers to a model FeCrAl alloy with 13% Cr, 6% Al, and minor alloying with yttrium.
“C” series alloys are engineering-grade FeCrAl alloys (Generation Il) with more focused Cr
concentrations. These alloys have the XMNY format, with M referring to the Cr content minus 10%. For



Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor
4 September 2017

example, CO6M refers to an engineering-grade alloy with 10% Cr, 6% Al, and minor alloying with
molybdenum. All specimens were produced at ORNL. More details regarding the alloy refinement and
selection can be found in previous documents [7, 9].

Table 1. Irradiation test matrix showing the loading of specimens within each rabbit, the irradiation
positions, fill gases, and dose levels

Rabbit Specimens Ir;ggiit?;ir?n Fill gas Nucr;wgig of Dose (dpa)
FCFO01 (I;(ig'E\SAYOi B1-3 92% He, Ar bal. 1 1.7
FCF02 CBCEZAYOE E7-5 97% He, Ar bal. 12 20.4
FCFO03 5312%11 C1-3 97% He, Ar bal. 1 17
FCF04 5;;&\;,22 E5-5 97% He, Ar bal. 4 6.8
FCF05 g;:&\;?; F6-5 97% He, Ar bal. 8 13.6
FCF06 (E:S;:IE\SAZ?_ F7-5 97% He, Ar bal. 12 20.4

4. EXPERIMENT FABRICATION AND DELIVERY TO HFIR

4.1 Rabbit Assembly

The six rabbits (FCFO1 through FCF06) were assembled in February 2017. Photographs of the
parts layout for all rabbits are shown in Figure 3. Figure 4 shows views of a specimen subassembly and
thermometry loaded inside a molybdenum sleeve with quartz wool packed in the center of the sleeve. The
signed capsule fabrication request forms are provided in Appendix A. Figure 5 shows examples of the pre-
irradiation dimensional inspection that is performed on each specimen outer diameter. The x and y values
are scaled so that they are x and y distances from some reference radius (arbitrarily defined as 99% of the
minimum measured inner radius of the cladding) that is unique to each specimen. This scale allows
observation of the variations in the cladding outer diameter at various axial locations (z) compared with
the nominal housing inner diameter of 9.70 mm. Both the cladding outer diameter values and the nominal
housing inner diameter are scaled to the same reference radius. These measurements are required to ensure
a proper gas gap between the specimen and the housing, which is used to control temperature. These
measurements can also be compared with post-irradiation dimensional measurements to determine
radiation swelling. Specimen B136Y-4 has a very uniform outer diameter along the entire axis. Specimen
C06M-02 has a more significant variation in diameter, particularly at one end (z=0 mm). Because this
nonuniformity would affect only the temperatures at the end of the specimen, specimen C06M-02 was
considered acceptable.
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Figure 3. Parts for rabbits FCFO1 through FCF06.
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Figure 4. Specimen suassembly (left), top-down view of specimen subassembly (top right), and top-
down view of a sleeve with thermometry in slots (bottom right).
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Figure 5. Examples (specimens C06M-02 and B136Y-4 shown) of dimensional inspection of specimen
outer diameter at various lengths compared with the nominal 9.70 mm housing inner diameter. All x and
y values are scaled so that they are x and y distances from some arbitrary reference radius that is unique to
each specimen.

All capsule components were dimensionally inspected and cleaned according to HFIR-approved
procedures, drawings, and sketches. After assembly of the internal components, all rabbit housing end
caps were welded to the housings using an electron beam weld. The capsules were then placed inside
sealed chambers that were evacuated and backfilled with ultra-high-purity helium/argon gas mixtures (see
Table 1) three times to ensure a pure environment. The chambers were placed inside a glove box, which
was also evacuated and backfilled with the same gas used in the sealed chambers. Each rabbit has a small
hole in the bottom of the housing that was seal-welded using a gas tungsten arc welding procedure. All
welds passed visual examination. Each capsule was then sent for nondestructive examination, which
included a helium leak test, hydrostatic compression at a pressure of 1,035 psi, mass comparisons before
and after hydrostatic compression to ensure no water penetrated the capsule housing, and a final post-
compression helium leak test. All rabbits passed helium leak testing and hydrostatic compression.

4.2 Fabrication Package and Delivery to HFIR

Each rabbit irradiation experiment requires a fabrication package that is reviewed by an
independent design engineer, a lead quality assurance (QA) representative, and a HFIR QA representative
before acceptance for insertion into the HFIR. The fabrication package must satisfy the requirements of
the experiment authorization basis document (EABD). Rabbit capsules fall under document EABD-HFIR-
2009-004. This document specifies a number of requirements that the rabbits must satisfy in the areas of

o thermal safety analyses,
material certification,
dimensional inspection,
cleaning,
assembly procedure,
sample loading,
fill gas,
welding, and



Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor
8 September 2017

e nondestructive evaluation.

The fabrication packages for rabbits FCF01 through FCF06 were reviewed and approved by an
independent design engineer, lead QA representative, and HFIR QA representative and accepted by HFIR
on April 12, 2017. The final signed acceptance page of the EABD is provided in Appendix A. All six
rabbits were inserted during HFIR cycle 472 (May 2017).

5. SUMMARY AND CONCLUSIONS

This report briefly summarizes the capsule design concept and the irradiation test matrix for six
rabbit capsules that were successfully assembled and delivered to the HFIR for insertion during cycle 472
(May 2017). Each rabbit contains two FeCrAl alloy tube specimens, which will be evaluated post-
irradiation as part of the Advanced Fuels Campaign to understand irradiation effects on the microstructure
and mechanical properties of accident-tolerant FeCrAl fuel cladding. A new rabbit design was developed
to accommodate the large diameter of standard 17x17 array PWR cladding tubes with a sufficient gap
between the cladding tubes and the rabbit housing to allow fine temperature control. A wide variety of
specimens were included in the test matrix, including Generation | and Generation Il FeCrAl alloys with
varying processing conditions, Cr concentrations, and minor alloying elements. The rabbits were
successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete QA fabrication
package. Pictures of the rabbit assembly process and the detailed dimensional inspection of select
specimens are included in this report. Documentation of the capsule fabrication and final acceptance by
HFIR is provided in an appendix. The data that will be obtained from PIE of the irradiated cladding tubes
will help support the qualification of FeCrAl fuel cladding for commercial applications to ultimately
improve the accident tolerance of LWRs.
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Experiment Authorization Bases Document: EABD-HFIR-2009-004
Title: Rabbit Irradiations in the HFIR Target Region Prepared By: G. J. Hirlz Date:01/12/2017

Rev 13
Page 10 of 36

Section 6: Acceptance for Use of As-Built Experiment Capsule

signatures.

Note: This section is used to document acceptance of the as-built experiment for reactor installation and
irradiation. This section Is completed after completion of Section 2. See notes for explanation of

1. List Applicable Rabbit Identification and Heat Generation Classification (High or Low)
User I.D. HFIR I.D.* Heat Classification

fcrol Yiien
poFe
FFod
(ALY
FcFasS
fFcFoL
Fo2ol
ToX02
eoxed
oz
FCzeS
Razad
moh"-f}

presented on product body.
Independent Verification of User |.D. and HFIR I.D. :

-

* Quality Assurance to verify correlation of User ID and Hj? 1D noted above are consistent with markings

2. Attach Capsule Fabrication Request Sheet or Equivalent: Chtis @ # y  Lead Experimenter

3. Approvals (see notes for explanation of signature responsibilities)

Cacshan Qeivic

Lead Experimenter

Lead Experimenter (signature)

-
#

lead QA

2 < Le@}f(%ﬁ( (signature)
Lee C. Syatk . VN

RRD QA Rm)/&(s;lgnatu )
G(’c’@ l-( u./(‘?.. ] 7@
RRD EA&C Staff RRD EA&C/Staff (signature)

N.A. No NCS Requirements
RRD Criticality Safety Officer (signature)

N.A. No MBA Requirements
HFIR MBA Representative (signature)

N.A. No NCS Requirements
RRD Criticality Safety Officer

N.A. No MBA Requirements
HFIR MBA Representative

B2

HFIR Operations (print name)

FrLeR Berh W
HFIR Operations (signature)

Y-10-y

Date

w7
at

/o))

Date
eglrafr
at
Date

i
Date

o“\hj f2or

Date




