Nuclear Technology Research and Development

Approved for public release. Distribution is unlimited.

> Prepared for U.S. Department of Energy Advanced Fuels Campaign C.M. Petrie, K.G. Field, K. Linton Oak Ridge National Laboratory September 8, 2017 NTRD: M3FT-170R020203033

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

SUMMARY

The Advanced Fuels Campaign within the Nuclear Technology Research and Development program of the Department of Energy Office of Nuclear Energy is seeking to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are one of the leading candidate materials for fuel cladding to replace traditional zirconium alloys because of the superior oxidation resistance of FeCrAl. However, there are still some unresolved questions regarding irradiation effects on the microstructure and mechanical properties of FeCrAl at end-of-life dose levels. In particular, there are concerns related to irradiation-induced embrittlement of FeCrAl alloys due to secondary phase formation. To address this issue, Oak Ridge National Laboratory has developed a new experimental design to irradiate shortened cladding tube specimens with representative 17×17 array pressurized water reactor diameter and thickness in the High Flux Isotope Reactor (HFIR) under relevant temperatures (300-350°C). Post-irradiation examination will include studies of dimensional change, microstructural changes, and mechanical performance. This report briefly summarizes the capsule design concept and the irradiation test matrix for six rabbit capsules. Each rabbit contains two FeCrAl alloy tube specimens. The specimens include Generation I and Generation II FeCrAl alloys with varying processing conditions. Cr concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. Pictures of the rabbit assembly process and detailed dimensional inspection of select specimens are included in this report. The rabbits were inserted into HFIR starting in cycle 472 (May 2017).

CONTENTS

SUM	MARY	iii
ACRO	DNYMS	vii
ACKN	NOWLEDGMENTS	. viii
1.	OBJECTIVE	1
2.	INTRODUCTION	1
3.	TUBE IRRADIATION EXPERIMENT DESIGN. 3.1 Summary of Capsule Design. 3.2 Irradiation Test Matrix	1 1 3
4.	 EXPERIMENT FABRICATION AND DELIVERY TO HFIR 4.1 Rabbit Assembly 4.2 Fabrication Package and Delivery to HFIR 	4 4 7
5.	SUMMARY AND CONCLUSIONS	8
6.	REFERENCES	8
APPE	NDIX A. FABRICATION AND QUALITY ASSURANCE DOCUMENTATION FOR COMPLETED RABBITS	A-1

FIGURES

Figure 1. Section view showing irradiation capsule design concept	2
Figure 2. Temperature (°C) contours for the FCF04 rabbit assembly (left), bottom FeCrAl specimen (bottom right), and top FeCrAl specimen (top right)	3
Figure 3. Parts for rabbits FCF01 through FCF06.	5
Figure 4. Specimen subassembly (left), top-down view of specimen subassembly (top right), and top-down view of a sleeve with thermometry in slots (bottom right)	6
Figure 5. Examples (specimens C06M-02 and B136Y-4 shown) of dimensional inspection of specimen outer diameter at various lengths compared with the nominal 9.70 mm housing inner diameter. All <i>x</i> and <i>y</i> values are scaled so that they are x and y distances from some arbitrary reference radius that is unique to each specimen	7

TABLES

Table 1. Irradiation test matrix showing the loading of specimens within each rabbit, the	
irradiation positions, fill gases, and dose levels	4

ACRONYMS

AFC	Advanced Fuels Campaign
Al	aluminum
Ar	argon
Cr	chromium
DOE-NE	US Department of Energy, Office of Nuclear Energy
dpa	displacements per atom
EABD	experiment authorization basis document
Не	helium
HFIR	High Flux Isotope Reactor
LWR	light water reactor
ORNL	Oak Ridge National Laboratory
PIE	post-irradiation examination
PWR	pressurized water reactor
QA	quality assurance
SiC	silicon carbide
Zr	zirconium

ACKNOWLEDGMENTS

This work was supported by the US Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC). Neutron irradiation in the High Flux Isotope Reactor (HFIR) is made possible by the Office of Basic Energy Sciences, US DOE. The report was authored by UT-Battelle under Contract No. DE-AC05-00OR22725 with the US DOE. The contributions of Kurt Terrani, ORNL program manager for the AFC, are gratefully acknowledged. Doug Stringfield, Jordan Massengale, and David Bryant performed most of the capsule assembly work and managed the welding and nondestructive examinations.

1. OBJECTIVE

The objective of this work is to irradiate wrought FeCrAl tubes in the High Flux Isotope Reactor (HFIR) that have a geometry and microstructure representative of what would be used in a 17×17 array pressurized water reactor (PWR). The FeCrAl tube specimens are to be irradiated at typical PWR temperatures of $300-350^{\circ}$ C at radiation doses ranging from 1.8 to >20 displacements per atom (dpa).

2. INTRODUCTION

Despite a long history of successful operation, traditional light water reactor (LWR) fuel systems with UO₂ fuel and zirconium (Zr)-alloy cladding are susceptible to high-temperature steam oxidation, hydrogen generation, and radiation-induced embrittlement, particularly after the Zr-alloy cladding forms hydrides [1-3]. A number of advanced nuclear fuel cladding concepts are currently being investigated to improve the accident tolerance of LWRs, primarily by identifying cladding materials with improved high-temperature steam oxidation resistance during accident scenarios [4, 5]. Other potential benefits of accident-tolerant fuels include enhanced fission product retention, reduced hydrogen generation, and improved thermomechanical properties. Performance under normal operating conditions (e.g., high fuel burnup, long fuel cycle length, high reliability) remains important for economic viability.

Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace traditional Zr-based cladding because of their superior oxidation resistance and high-temperature strength compared with Zr alloys [6-8]. However, FeCrAl alloys are known to experience embrittlement under irradiation as a result of secondary-phase formations [9-11]. New information regarding the irradiation performance of FeCrAl alloys with representative LWR geometry, microstructure, and temperature would be invaluable for qualifying these materials for use in commercial reactors. Accelerated irradiation testing is preferred so that a large test matrix can be evaluated and down-selection of specific alloys and processing parameters can occur within a reasonable time and cost. This report describes the successful irradiation of six "rabbit" capsules, each containing two FeCrAl tube specimens, in the HFIR at Oak Ridge National Laboratory (ORNL). Two of the six rabbits have completed irradiation and are awaiting shipping before being disassembled in a hot cell. The remaining four rabbits will finish irradiation in late calendar year 2018. The irradiated samples will allow the severity of the cladding degradation under irradiation to be determined through post-irradiation examination (PIE), which will include mechanical and microstructural evaluations.

3. TUBE IRRADIATION EXPERIMENT DESIGN

3.1 Summary of Capsule Design

The cladding tube specimens are packaged inside a HFIR-approved irradiation vehicle so that they can accumulate the desired radiation dose at the design temperature. A detailed summary of the irradiation capsule design and analysis can be found in a previous report [12]. A brief description of the capsule design is provided here. A section view of the rabbit capsule is shown in Figure 1. Predicted temperatures for rabbit FCF04 are shown in Figure 2. The details of the various rabbits and the test matrix are provided in Section 3.2. The outer containment for the irradiation experiment is the rabbit capsule housing, which is directly cooled on the outer surface by the HFIR primary coolant. Rabbits are stacked vertically inside

aluminum (Al) targets that are placed in the flux trap (radial center region with highest neutron flux) of the HFIR core. The specimen temperature is controlled by varying the concentration of a helium/argon gas mixture according to the heat generated in the internal components and the size of the gas gap between the cladding and the housing. Varying the gas mixture changes the effective thermal conductivity of the gas gap. Neutron and gamma heating from the HFIR fuel is accurately determined using neutronics models of the HFIR core. The cladding tube specimens are placed over molybdenum sleeves. Centering thimbles are inserted inside the sleeves to keep the assemblies centered inside the housing and to maintain a constant gas gap between the cladding and the housing. Wires are inserted through the thimbles and small radial holes in the sleeves to keep the thimbles from being able to dislodge from the sleeves. Grafoil insulators are stacked on both ends of the capsule to reduce axial heat losses. Passive silicon carbide (SiC) temperature monitors are placed inside slots that are machined near the inner surfaces of the sleeves. These SiC temperature monitors are used to determine the actual irradiation temperature using a dilatometric technique [13].

Figure 1. Section view showing irradiation capsule design concept.

Figure 2. Temperature (°C) contours for the FCF04 rabbit assembly (left), bottom FeCrAl specimen (bottom right), and top FeCrAl specimen (top right).

3.2 Irradiation Test Matrix

The irradiation test matrix shown in Table 1 includes a variety of FeCrAl alloys. The irradiation positions correspond to the HFIR grid position (see reference [12]) followed by the axial position (numbered 1–7 from bottom to top, with position 4 located at the core midplane). The specimen part numbers are in the format XMNY or XMMNY, where X indicates the alloy series, M (or MM) the chromium (Cr) concentration (mass percent), N the Al concentration (mass percent), and Y a minor alloying element. "B" series alloys are model FeCrAl alloys (Generation I) that span a wide range of Cr concentrations. These alloys have the XMMNY format. In this case, MM refers to the Cr concentration. For example, B136Y refers to a model FeCrAl alloy with 13% Cr, 6% Al, and minor alloying with yttrium. "C" series alloys are engineering-grade FeCrAl alloys (Generation II) with more focused Cr concentrations. These alloys have the XMNY format, with M referring to the Cr content minus 10%. For

example, C06M refers to an engineering-grade alloy with 10% Cr, 6% Al, and minor alloying with molybdenum. All specimens were produced at ORNL. More details regarding the alloy refinement and selection can be found in previous documents [7, 9].

Table 1.	Irradiation	test matrix	showing	the loading	g of sp	ecimens	within	each rabbit	the	irradiation
			positions	s, fill gases	, and c	lose leve	els			

Rabbit	Specimens	Irradiation position	Fill gas	Number of cycles	Dose (dpa)
ECE01	C06M-01	P1 2	02% Ha Arbal	1	17
reror	B136Y-1	D1-3	9270 He, Al Dal.	1	1.7
ECEO2	C06M-02	E7 5	0.70/ He Ar hel	10	20.4
FCF02	B136Y-4	E/-3	97% He, Ar bal.	12	20.4
ECE02	B126Y-1	C1 2	0.70/ He Archel	1	17
FCF05	C36M3-4	C1-3	97% He, Ar bal.	1	1./
ECE04	B126Y-2		0.70/ He Archel	4	6.9
FCF04	C36M3-2	E3-3	97% He, Ar bal.	4	0.8
FOFO	B126Y-3			0	12.6
FCF05	C36M3-3	F0-5	97% He, Ar bal.	8	13.0
FOFOC	B126Y-4			10	20.4
FCF06	C36M3-1	F/-5	9/% He, Ar bal.	12	20.4

4. EXPERIMENT FABRICATION AND DELIVERY TO HFIR

4.1 Rabbit Assembly

The six rabbits (FCF01 through FCF06) were assembled in February 2017. Photographs of the parts layout for all rabbits are shown in Figure 3. Figure 4 shows views of a specimen subassembly and thermometry loaded inside a molybdenum sleeve with quartz wool packed in the center of the sleeve. The signed capsule fabrication request forms are provided in Appendix A. Figure 5 shows examples of the preirradiation dimensional inspection that is performed on each specimen outer diameter. The x and y values are scaled so that they are x and y distances from some reference radius (arbitrarily defined as 99% of the minimum measured inner radius of the cladding) that is unique to each specimen. This scale allows observation of the variations in the cladding outer diameter at various axial locations (z) compared with the nominal housing inner diameter of 9.70 mm. Both the cladding outer diameter values and the nominal housing inner diameter are scaled to the same reference radius. These measurements are required to ensure a proper gas gap between the specimen and the housing, which is used to control temperature. These measurements can also be compared with post-irradiation dimensional measurements to determine radiation swelling. Specimen B136Y-4 has a very uniform outer diameter along the entire axis. Specimen C06M-02 has a more significant variation in diameter, particularly at one end (z=0 mm). Because this nonuniformity would affect only the temperatures at the end of the specimen, specimen C06M-02 was considered acceptable.

Figure 3. Parts for rabbits FCF01 through FCF06.

Figure 4. Specimen subassembly (left), top-down view of specimen subassembly (top right), and topdown view of a sleeve with thermometry in slots (bottom right).

Figure 5. Examples (specimens C06M-02 and B136Y-4 shown) of dimensional inspection of specimen outer diameter at various lengths compared with the nominal 9.70 mm housing inner diameter. All *x* and *y* values are scaled so that they are x and y distances from some arbitrary reference radius that is unique to each specimen.

All capsule components were dimensionally inspected and cleaned according to HFIR-approved procedures, drawings, and sketches. After assembly of the internal components, all rabbit housing end caps were welded to the housings using an electron beam weld. The capsules were then placed inside sealed chambers that were evacuated and backfilled with ultra-high-purity helium/argon gas mixtures (see Table 1) three times to ensure a pure environment. The chambers were placed inside a glove box, which was also evacuated and backfilled with the same gas used in the sealed chambers. Each rabbit has a small hole in the bottom of the housing that was seal-welded using a gas tungsten arc welding procedure. All welds passed visual examination. Each capsule was then sent for nondestructive examination, which included a helium leak test, hydrostatic compression at a pressure of 1,035 psi, mass comparisons before and after hydrostatic compression to ensure no water penetrated the capsule housing, and a final post-compression helium leak test. All rabbits passed helium leak testing and hydrostatic compression.

4.2 Fabrication Package and Delivery to HFIR

Each rabbit irradiation experiment requires a fabrication package that is reviewed by an independent design engineer, a lead quality assurance (QA) representative, and a HFIR QA representative before acceptance for insertion into the HFIR. The fabrication package must satisfy the requirements of the experiment authorization basis document (EABD). Rabbit capsules fall under document EABD-HFIR-2009-004. This document specifies a number of requirements that the rabbits must satisfy in the areas of

- thermal safety analyses,
- material certification,
- dimensional inspection,
- cleaning,
- assembly procedure,
- sample loading,
- fill gas,
- welding, and

• nondestructive evaluation.

The fabrication packages for rabbits FCF01 through FCF06 were reviewed and approved by an independent design engineer, lead QA representative, and HFIR QA representative and accepted by HFIR on April 12, 2017. The final signed acceptance page of the EABD is provided in Appendix A. All six rabbits were inserted during HFIR cycle 472 (May 2017).

5. SUMMARY AND CONCLUSIONS

This report briefly summarizes the capsule design concept and the irradiation test matrix for six rabbit capsules that were successfully assembled and delivered to the HFIR for insertion during cycle 472 (May 2017). Each rabbit contains two FeCrAl alloy tube specimens, which will be evaluated postirradiation as part of the Advanced Fuels Campaign to understand irradiation effects on the microstructure and mechanical properties of accident-tolerant FeCrAl fuel cladding. A new rabbit design was developed to accommodate the large diameter of standard 17×17 array PWR cladding tubes with a sufficient gap between the cladding tubes and the rabbit housing to allow fine temperature control. A wide variety of specimens were included in the test matrix, including Generation I and Generation II FeCrAl alloys with varying processing conditions, Cr concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete QA fabrication package. Pictures of the rabbit assembly process and the detailed dimensional inspection of select specimens are included in this report. Documentation of the capsule fabrication and final acceptance by HFIR is provided in an appendix. The data that will be obtained from PIE of the irradiated cladding tubes will help support the qualification of FeCrAl fuel cladding for commercial applications to ultimately improve the accident tolerance of LWRs.

6. **REFERENCES**

- 1. Northwood, D.O. and U. Kosasih, *Hydrides and delayed hydrogen cracking in zirconium and its alloys*, International Metals Reviews, **28** (1983) p. 92-121.
- 2. Cathcart, J.V., et al., Zirconium Metal-water Oxidation Kinetics. IV. Reaction Rate Studies, ORNL/NUREG-17, Oak Ridge National Laboratory: Oak Ridge, TN (1977).
- 3. Garzarolli, F., et al. Oxide growth mechanism on zirconium alloys. in Zirconium in the Nuclear Industry: Ninth International Symposium. 1991. Kobe, Japan: ASTM International.
- 4. Zinkle, S.J., et al., *Accident tolerant fuels for LWRs: A perspective*, Journal of Nuclear Materials, **448** (2014) p. 374-379.
- 5. Pint, B.A., et al., *Material Selection for Accident Tolerant Fuel Cladding*, Metallurgical and Materials Transactions E, **2** (2014) p. 190-196.
- 6. Terrani, K.A., S.J. Zinkle, and L.L. Snead, *Advanced oxidation-resistant iron-based alloys for LWR fuel cladding*, Journal of Nuclear Materials, **448** (2014) p. 420-435.
- 7. Yamamoto, Y., et al., *Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors*, Journal of Nuclear Materials, **467** (2015) p. 703-716.
- 8. Rebak, R., *Ferritic alloys as accident tolerant fuel cladding material for light water reactors,* Metallurgical and Materials Transactions E, **2** (2014) p. 74.
- 9. Field, K.G., et al., Database on Performance of Neutron Irradiated FeCrAl Alloys, ORNL/TM(2016/335, Oak Ridge National Laboratory: Oak Ridge, TN (2016).
- 10. Field, K.G., et al., *Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys*, Journal of Nuclear Materials, **465** (2015) p. 746-755.
- 11. Field, K.G., et al., *Heterogeneous dislocation loop formation near grain boundaries in a neutronirradiated commercial FeCrAl alloy*, Journal of Nuclear Materials, **483** (2017) p. 54-61.

- 12. Petrie, C.M., et al., Analysis and Experimental Qualification of an Irradiation Capsule Design for Testing Pressurized Water Reactor Fuel Cladding in the High Flux Isotope Reactor, ORNL/TM-2017/67, Oak Ridge National Laboratory: Oak Ridge, TN (2017).
- 13. Campbell, A., et al., *Method for analyzing passive silicon carbide thermometry with a continuous dilatometer to determine irradiation temperature*, Nuclear Instruments and Methods in Physics Research B, **370** (2016) p. 49-58.

APPENDIX A. FABRICATION AND QUALITY ASSURANCE DOCUMENTATION FOR COMPLETED RABBITS

Page 1 of 11 Dat /2017

Capsule Number:	FCF01									
Irradiation Conditions						Approvals				
Irradiation Location		TRRH	4	S LND			Request		Build	
Target Fluence	-		.4E+21	1 1 1		^p erformed by:		1-6-2		
First Cycle Goal			471	11-0.0			Chrun fel	ine .	N.Xee z	<u>م</u>
Irradiation Time		1.0	cycles			Checked by:	C JUE J C	4100		1-1
Irradiation Temperature			340°C				July July		Code M (allmed ?	±1/14
Fill Gas	6	2% He	Ar bal.				_			
Cladding Design Diameter		9.50	mm							
Capsule Fabrication										
	Drawing	Rev.	Part	Material	Count	Comment	MAT IR	FAB IR	9	Mass (g)
Housing	X3E020977A690	0	۲	AI 6061	+		19348	20642	16-16	4.6834
Housing end cap	X3E020977A634	A	2	AI 4047	-		. 20311	20640	16-26	0.5140
Cladding	S16-11-FI EXCI AD02	-	0	FeCrAI	c	2 marks	20625	20625	C06M-01	1.3527
		-	4		4	1 mark	20628	20628	B136Y-1	1.9545
Sleeve	S16-11-FI FXCI AD02	~	e.	Moly	0	- Group 1	20162	20630	16-02	5.3710
			,		4	Group 3	00107	20632	16-06	7.5330
Centering thimble				Ti-6AI4V					01	0.1900
	S16-11-FLEXCLAD02	*	4		4		20634	1000	02	0.1920
		•			r.		10007	10007	03	0.1900
									04	0.1910
Thermometry				SIC		16mm		20200	٦.	0.0050
	S16-11-FLEXCLAD02	~			4		10507	20000	9	0.0070
		3	>		r	24mm	70061	20200	25	0.0110
	-							00007	26	0.0090
Wire	S16-11-FLEXCLAD02	-	9	Moly	4	.020" diameter	19600	19600	4 total	0.0860
Grafoil, .13 mm thick	S16-10-FLEXCLAD01	-	2	Grafoil	10	.005" thick	19812	19812	10 total	0.0900
Quartz wool	S16-11-FLEXCLAD02	-	7	SiO2	AR	See note 12	20679	20679	N/A	0.0480
									Total Mass	22.4276
Assembly					1				Specimen Mass	3.3072
	Drawing	Rev.		Comment	_				Internal Mass	17.2302
Assembly Drawing	S16-10-FLEXCLAD01	- 0	specimer	n marks are inscr	ribed on the	end				
	X3EU20977A689	0			_					
Fill Gas	92% He. Ar bal.				2					

APPENDIX A. FABRICATION AND QUALITY ASSURANCE DOCUMENTATION FOR **COMPLETED RABBITS**

Caps ⁻¹ 9 Fabricat	ion Request Shee			C					Page Dat	e 2 of 11 /2017
Capsule Number:	FCF02									
Irradiation Conditions						Approvals				
Irradiation Location		TRRH	S			8	Request		Build	
Target Fluence		2.8	3E+22			^b erformed by:		2-9-17	1 5,00	2/17
First Cycle Goal			4/1				Units kourd	2	e e e	-
Irradiation Lime		12.0	cycles			checked by:	112C	4.62	H. Whannell)	£1/40
Irradiation Temperature			340°C				man t		C - long	
Fill Gas	.6	7% He,	Ar bal.							
Cladding Design Diameter		9.50	шш					8		
Capsule Fabrication										
	Drawing	Rev.	Part	Material	Count	Comment	MAT IR	FAB IR	Q	Mass (g)
Housing	X3E020977A690	0	-	AI 6061	-		19348	20642	16-06	4.6483
Housing end cap	X3E020977A634	×	2	AI 4047	-		20311	20640	16-04	0.5150
Cladding	CAR 44 EI EVOI ADOD	*	c	FeCrAI	c	2 marks	20625	20625	C06M-02	1.3362
		2	v		7	4 marks	20628	20628	B136Y-4	1.9517
Sleeve	CAR-44-EI EVOI ADOD	Ŧ	ę	Moly	c	Group 1	20162	20630	16-03	5.3610
8		-	2		4	Group 2	00107	20631	16-06	7.8051
Centering thimble				TI-6AI4V					05	0.1930
	CAR 44 ELEVOI ADAD	Ŧ	-		~		10000	1 COUC	90	0.1930
	010-11-LECOCADOR	-	t		4		20034	20034	07	0.1920
									80	0.1890
Thermometry				SiC				00000	en	0.0060
	CAR 44 EI EVOI ADAD	*	ц		-		10502	20000	4	0.0070
		7	D.		t		70001	20000	-	0.0100
						e.		20002	1	0.0090
Wire	S16-11-FLEXCLAD02	٢	9	Moly	4	.020" diameter	19600	19600	4 total	0.0870
Grafoil, .13 mm thick -	S16-10-FLEXCLAD01	۲	2	Grafoil	10	.005" thick	19812	19812	10 total	0.0900
Quartz wool	S16-11-FLEXCLAD02	٦	7	SiO2	AR	See note 12	20679	20679	N/A	0.0510
						+			Total Mas	s 22.6443
Assembly					ſ				Specimen Mas	s 3.2879
	Drawing	Rev.		Comment					Internal Mas	s 17.4810
Assembly Drawing	S16-10-FLEXCLAD01	-	specime	n marks are inso	cribed on the	end				
Welding & Cleaning	X3E020977A689	0								
Fill Gas	97% He, Ar bal.				_					

A-4

									i	
Capsule Number:	FCF03		•							
Irradiation Conditions Irradiation Location		TRRH	N up			Approvals	Request		Build	
Target Fluence		2	4E+21	CMP	L ^{LL}	erformed by:		7-9-17		- 11
First Cycle Goal			471	3-3-17	<u>.</u>		Chris Letri	9	D. S.C.	11 3/2
Irradiation Time		1.0	cvcles		10	checked by:	J. D.C.	400	1.11 1.	alalia
Irradiation Temperature			340°C				Hukery'	4.67	CI-MIRTINGIN	2/4/17
Fill Gas	6	7% He	Ar bal.				-			
Cladding Design Diameter		9.50	шш							
Capsule Fabrication		3								
	Drawing	Rev.	Part	Material	Count	Comment	MATIR	FAB IR	Q	Mass (g)
Housing	X3E020977A690	0	-	AI 6061	-		19348	20642	16-07	4.6591
Housing end cap	X3E020977A634	A	2	AI 4047	٢		20311	20640	16-28	0.5140
Cladding	STR-11-FI EXCI AD00	Ŧ	c	Fecral	c	1 mark	20626	20626	B126Y-1	1.9514
		-	7		z	4 marks	20627	20627	C36M3-4	1.9515
Sleeve	C16-11-EI EXCI AD00	*	c	Moly	c	Group 3	20162	20632	16-01	7.5660
		2	2		v	Group 2	20102	20631	16-01	7.8006
Centering thimble				Ti-6AI4V		8 0			60	0.1910
	CAR 44 EI EVOI ADOD						reauc	r couc	10	0.1920
	310-11-LECOUND	-	+		ŧ		+2002 ·	40024	11	0.1890
									12	0.1890
Thermometry				SiC					m	0.0100
	COUNTERVELATION	×	ч		*		10500	20005	4	0.0110
		-	0		t		20061	00007	ъ	0.0110
									œ	0.0110
Wire	S16-11-FLEXCLAD02	-	9	Moly	4	.020" diameter	19600	19600	4 total	0.0860
Grafoil, .13 mm thick	S16-10-FLEXCLAD01	-	2	Grafoil	10	.005" thick	19812	19812	10 total	0.0880
Quartz wool	S16-11-FLEXCLAD02	-	7	SiO2	AR	See note 12	20679	20679	N/A	0.0950
									Total Mass	25.5156
Assembly						ŝ			Specimen Mass	3.9025
	Drawing	Rev.	Ö	omment					Internal Mass	20.3426
Assembly Drawing	S16-10-FLEXCLAD01	-	specimen	marks are inscril	ped on the	end				
Welding & Cleaning	X3E020977A689	0	100	1						
Fill Gas	97% He, Ar bal.									

Caps ^{ule} Fabricatio	on Request Sheet			C					Pane Dí	4 of 11 9/2017
Capsule Number:	FCF04									
Irradiation Conditions						Approvals				
Irradiation Location		TRRH	Q				Request		Build	
Target Fluence			9.4E+21		2	Performed by:		2-9-17	C	-1-1
First Cycle Goal			471				Chrin Let	The .	Q.X.A	4112
Irradiation Time		4.0	cycles			Checked by:	JAT 1	19.92	Uth A.	-11 M
Irradiation Temperature			340°C				- Willin		C. 1000000 0	4/4/11
Fill Gas		97% He	, Ar bal.							
Cladding Design Diameter		9.50	mm							
Capsule Fabrication										
	Drawing	Rev.	Part	Material	Count	Comment	MATIR	FAB IR	Q	Mass (d)
Housing	X3E020977A690	0	-	AI 6061	-		19348	20642	16-12	4.6529
Housing end cap	X3E020977A634	A	2	AI 4047	-		20311	20640	16-35	0.5160
Cladding	S16-11-FI EXCI AD02		c	FeCrAI	c	2 marks	20626	20626	B126Y-2	1.8000
		-	4		v	3 marks	20627	20627	C36M3-2	1.7970
Sleeve	S16-11-FI EXCI AD02	•	¢	Moly	0	Group 3	20162	20632	16-02	7.6100
7		-	,		4	Group 2	20102	20631	16-02	7.7972
Centering thimble				Ti-6AI4V					13	0.1940
	S16-11-FI FXCI AD02		4		V		20637	NCSOC	14	0.1930
2		8	t		r		10001	10007	15	0.1920
-		_		1					16	0.1940
Thermometry		_		SIC					12	0.0100
	S16-11-FI FXCI AD02	5	u		V		10505	DUESE	13	0.0100
			>		r		70001	20002	18	0.0090
									15	0.0110
Wire	S16-11-FLEXCLAD02	-	9	Moly	4	.020" diameter	19600	19600	4 total	0.0870
Grafoil, .13 mm thick	S16-10-FLEXCLAD01	-	2	Grafoil	10	.005" thick	19812	19812	10 total	0.0890
Quartz wool	S16-11-FLEXCLAD02	-	7	Si02	AR	See note 12	20679	20679	N/A	0.0790
									Total Mass	25.2411
Assembly	C	4			Γ			22.1	Specimen Mass	3.5970
Accombly Drawing	Ste to El EVOLADO	Kev.		Comment					Internal Mass	20.0722
Moding Planing	Variation 10-10-10-10-10-10-10-10-10-10-10-10-10-1		specime	in marks are inso	cribed on the	e end				
	AJEUZUS/ LADOS	0			Т					
	21 70 THE, MI DAIL				_					

e
e
2
(0)
~
÷
0)
Ð
-
ъ
C
Ñ
Ballets.
F
ō
÷
i
0
-
0
m
LL.
-
C.
-
100
S
0
3
()
-

Page 5 of 11 Da //2017

Capsule Number:	FCF05			
Irradiation Conditions				
Irradiation Location		TRRH	Q	
Target Fluence		1.6	38E+22	
First Cycle Goal			471	
Irradiation Time		8.0	cycles	
Irradiation Temperature			340°C	
Fill Gas		97% He,	Ar bal.	
Cladding Design Diameter		9.50	mm	
Capsule Fabrication				
	Canada a	2	1	

Capsule Fabrication										
	Drawing	Rev.	Part	Material	Count	Comment	MAT IR	FAB IR	Q	Mass (g)
Housing	X3E020977A690	0	-	AI 6061	-		19348	20642	16-03	4.6692
Housing end cap	X3E020977A634	A	2	AI 4047	*-		20311	20640	16-29	0.5150
Cladding	SAE 11 EVOI ADOD	•	c	FeCrAI	c	3 marks	20626	20626	B126Y-3	1.7840
	S 10-11-FLEAUCHU02	-	v		v	4 marks	20627	20627	C36M3-3	1.7930
Sleeve	S16 11 EVCI ADOD	•	c	Moly	c	0.000	00460	00000	16-03	7.5520
	310-11-L LEVOUND	-	2		v	c dnoio	20102	70007	16-05	7.5260
Centering thimble				Ti-6AI4V					17	0.1910
	S46 11 ELEVELADOS	*					1 Canc	reauc	18	0.1920
	3 10-11-L LEVOLADOZ	-	1		t		10007	10007	19	0.1920
		_							20	0.1940
Thermometry				SiC					16	0.0100
	S18 11 EVCI ADOD	*	u				0000	10000	20	0.0100
	2 10-1 1-L LEVOLADOZ	-	n		1		70021	20002	21	0.0110
		_							47	0.0110
Wire	S16-11-FLEXCLAD02	+	9	Moly	4	.020" diameter	19600	19600	4 total	0.0850
Grafoil, .13 mm thick	S16-10-FLEXCLAD01	+	2	Grafoil	10	.005" thick	19812	19812	10 total	0.0940
Quartz wool	S16-11-FLEXCLAD02	-	7	Si02	AR	See note 12	20679	20679	N/A	0.0940
									Total Mass	24.9232
Assembly					41 24				Specimen Mass	3.5770
	Drawing	Rev.		Comment					Internal Mass	19.7390

specimen marks are inscribed on the end Comment Rev. -0 S16-10-FLEXCLAD01 X3E020977A689 97% He, Ar ba Drawing Assembly Drawing Welding & Cleaning Fill Gas

Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor August 2017

D. Stud 2/9/17

Build

2417

Approvals Performed by:

Checked by:

Request

FILME LANDER

41.6.2

Capsulo Fabricatio	on Request Sheet			O				-	Pace	5 of 11 /2017
Capsule Number:	FCF06			-1						
Irradiation Conditions						Approvals	92)			
Irradiation Location		TRRH	2 2				Request		Build	
Target Fluence		2	83E+22	1 1020		Performed by:	Chair OL	2-9-17	2 Call 2	t-1 -2-
Irradiation Time		101	1 milee			Charked hur	AND IN THE	3		
Irradiation Temperature		171	340°C	× 8 4	<u> </u>	diceved by.	Jully	41.6	A Memory a	H/H
Fill Gas	*	97% He	, Ar bal.				1 1			
Cladding Design Diameter		9.50	mm							
Capsule Fabrication	2									
	Drawing	Rev.	Part	Material	Count	Comment	MATIR	FAB IR	0	Mass (a)
Housing	X3E020977A690	0	-	AI 6061	-		19348	20642	16-01	4.6524
Housing end cap	X3E020977A634	A	2	AI 4047			20311	20640	16-06	0.5170
Cladding	S18-11-EI EXCI AD02		c	FeCrAI	c	4 marks	20626	20626	B126Y-4	1.7950
		1	4		7	1 mark	20627	20627	C36M3-1	1.7920
Sleeve	S18-11-FI EXCI 4000		ď	Moly	c	Group 3	20462	20632	16-04	7.6180
		-	2		7	Group 2	20102	20631	16-05	7.8359
Centering thimble				Ti-6AJ4V					21	0.1900
	S16-11-FI EXCI 4D02	*	4		v		1000	reauc	22	0.1930
		-	t	34	r		40007	40007	23	0.1880
		_							. 24	0.1920
Thermometry				SiC					50	0.0110
1.4	S16-11-FI EXCI AD02	•	u		V		10507	DOCOL	51	0.0100
		1	>		r.		70001	00007	52	0.0100
		_							53	0.0110
Wire	S16-11-FLEXCLAD02	-	9	Moly	4	.020" diameter	19600	19600	4 total	0.0870
Grafoil, .13 mm thick	S16-10-FLEXCLAD01	-	2	Grafoil	10	.005" thick	19812	19812	10 total	0.0950
Quartz wool	S16-11-FLEXCLAD02	~	2	SiO2	AR	See note 12	20679	20679	N/A	0.0750
	5								Total Mass	25.2723
Assembly		1			ſ				Specimen Mass	3.5870
	Drawing	Rev.		Comment	י יר				Internal Mass	20.1029
Assembly Drawing	S16-10-FLEXCLAD01		specim	en marks are inso	cribed on the	end				
Welding & Cleaning	X3E020977A689	0			Т					
Fill Gas	97% He, Ar bal.				_					

Experiment Authorization Bases Document: EABD-HFIR-2009-004 Rev 13 Title: Rabbit Irradiations in the HFIR Target Region Prepared By: G. J. Hirtz Page 10 of 36 Date:01/12/2017 Section 6: Acceptance for Use of As-Built Experiment Capsule Note: This section is used to document acceptance of the as-built experiment for reactor installation and irradiation. This section is completed after completion of Section 2. See notes for explanation of signatures. 1. List Applicable Rabbit Identification and Heat Generation Classification (High or Low) HFIR I.D.* User I.D. Heat Classification Him FCFO FUFOZ FCF03 FCFOY FCF05 FCFOL FCZOL F0202 FC203 FOZOY FC205 FEZE CAP 3-14-17 * Quality Assurance to verify correlation of User ID and HFIB ID noted above are consistent with markings presented on product body. - Climith Independent Verification of User I.D. and HFIR I.D. : 2. Attach Capsule Fabrication Request Sheet or Equivalent : Chrun etrie, Lead Experimenter 3. Approvals (see notes for explanation of signature responsibilities) Christian etric -10-17 m Lead Experimenter Lead Experimenter (signature) Date 12 Ark Lead QA Lead QA (signature) 4 Lee C. hit Omi RRD QA RRD QA (signature) Date Greg RRD EA&C Staff RRD EA&C/Staff (signature) N.A. No NCS Requirements N.A. No NCS Requirements NA **RRD** Criticality Safety Officer RRD Criticality Safety Officer (signature) Date N.A. No MBA Requirements N.A. No MBA Requirements NA HFIR MBA Representative HFIR MBA Representative (signature) Date E Faller 04/23/2017 FULLER, BREAN HFIR Operations (print name) HFIR Operations (signature) Date