ORNL/TM-2017/387 ORNL/NTRC-075, Rev. 0

Test Report of Special Form Qualification Testing for the ORNL U ZiPCAN

O. A. Martinez, Ph.D.

August 2017

Approved for public release. Distribution is unlimited.

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the following source:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 *Telephone* 703-605-6000 (1-800-553-6847) *TDD* 703-487-4639 *Fax* 703-605-6900 *E-mail* info@ntis.gov *Website* http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source:

Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 *Telephone* 865-576-8401 *Fax* 865-576-5728 *E-mail* reports@osti.gov *Website* http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ORNL/2017/387 ORNL/NTRC-075 Rev. 0

Reactor and Nuclear Systems Division

TEST REPORT OF SPECIAL FORM QUALIFICATION TESTING FOR THE ORNL U ZIPCAN

O. A. Martinez, Ph.D.

August 2017

Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, TN 37831-6285 managed by UT-BATTELLE, LLC for the OAK RIDGE NATIONAL LABORATORY Nuclear Security and Isotope Technology Division US DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725

REVISION LOG

Revision #	Issue Date	Pages affected	Comments
Revision 0	August 2017	All	Original Issue

Test Report of Special Form Qualification Testing for the ORNL U ZiPCan

Prepared for Oak Ridge National Laboratory Nuclear Security and Isotope Technology Division

Prepared by O. A. Martinez, Ph.D.

Oak Ridge National Laboratory Reactor and Nuclear Systems Division Used Fuel Systems Group at the National Transportation Research Center

APPROVALS

Name	Position	Date
O A. Martinez, Ph.D.	ORNL Package Testing Program	
Matt Feldman, P.E.	ORNL Package Testing Program Manager	
Michael Houston	ORNL Package Testing Quality Representative	
John Scaglione	Used Fuel System Group Leader	

REV	ISIO	NLOG.		iii
APP	ROV	ALS		v
LIST	Г OF F	FIGURE	S	ix
LIST	GOF 1	TABLES	5	X
ACF	RONY	MS		xi
ABS	TRAG	СТ		1
1.	INTR	ODUC	ΓΙΟΝ	1
	1.1	DESCF	RIPTION OF THE U ZIPCAN	2
	1.2	DESCF	RIPTION OF QUALITY ASSURANCE ACTIVITIES	4
	1.3	ZIPCA	N TEST MATRIX	4
	1.4	TEST I	DATA RECORDS	5
	1.5	DEVIA	TIONS FROM THE TEST PLAN	5
2.	PRE-	TEST A	CTIVITIES	1
3.	SPEC	CIAL FC	PRM TESTS	1
	3.1	IMPAC	TTEST (ISO 2919:1999(E))	1
	3.2	HEAT	TEST	3
	3.3	LEAK	RATE TESTING	6
		3.3.1	Evacuated Envelope (with Back Pressurization)	6
		3.3.2	Gas bubble techniques	7
4.	CON	CLUSIC	DN	0
APP	ENDI	X A. U.	ZIPCAN DRAWINGS	A-1
APP	ENDI	X B. TE	ST FORMS	B-1
APP	ENDI	X C. WI	ELD INSPECTION REPORT	C-1
APP	ENDI	X D. LE	AK TESTER CERTIFICATION	D-1
APP	ENDI	X E. LE	AK TESTING PROCEDURE	E-1
APP	ENDI	X F. CA	LIBRATION RECORDS	.F-1

CONTENTS

LIST OF FIGURES

Figure 1.1. Top view of the U ZiPCan triangle encasement	. 3
Figure 1.2. Side assembly view.	. 3
Figure 1.3. U ZiPCan triangle encasement test unit	.4
Figure 3.1. Impact billet 1 m above the ZiPCan.	. 2
Figure 3.2. Before and after impact of the U ZiPCan.	. 3
Figure 3.3. Heat test furnace in REDC.	.4
Figure 3.4. Type K thermocouple calibration record	.4
Figure 3.5. Heat test temperature profile.	. 5
Figure 3.6. U ZipCan post heat test results	. 5
Figure 3.7. Diagram of helium back pressurization test.	. 7
Figure 3.8. Diagram of helium leak testing system.	. 7
Figure 3.9. Vacuum bubble test.	. 8
Figure A.1. U ZiPCan engineering drawing.	3

LIST OF TABLES

Table 1.1. Isotopic distribution of the heat test unit, TU-1 (C1-0290)	
Table 1.2. Sequence of Tests and Processes for the U ZiPCan	5
Table 1.3. Detailed sequence of tests and processes for Test Units 1-3 (TU-1 through TU-3)	5
Table 1.4. Heat Test Units mass distribution	6
Table 3.1. Leak rate test variables and results for TU-1 and TU-4	
Table 3.2. Bubble test results for TU-1 and TU-4	

ACRONYMS

ANSI	American National Standards Institute
ASTM	American Society for Testing and Materials
CFR	Code of Federal Regulations
NDT	non-destructive testing
NSC	Y-12 National Security Complex
ORNL	Oak Ridge National Laboratory
PTP	Package Testing Program
QA	quality assurance
REDC	Radiochemical Engineering Development Center
RHAC	Research Hazard Assessment and Control
TIG	tungsten inert gas
TU	test unit
ZiPCans	Zirconia Pre-Encapsulation Canisters

ABSTRACT

Two prototype Zirconia Pre-Encapsulation Canisters (ZiPCans) of the same design were evaluated to demonstrate compliance with requirements of the following regulations:

- Title 49, Code of Federal Regulations (CFR), Part 173.469, *Tests for Special Form Class 7 (Radioactive) Materials*, and
- Title 10, Code of Federal Regulations, Part 71.75 (1)(i), Qualification of special form radioactive material and ISO2919:1999(E) Radiological protection –Sealed radioactive sources General requirements and classification.

The results of the special form tests are documented in this test report.

This test report describes the special form testing activities performed on the two ZiPCans. One prototype test unit was subjected to the tests stipulated by 10 CFR 71.75 (d)(1)(i), ISO 2919:1999(E) Class 4 impact test, along with the leak rate test specified in 49 CFR 173.469(a)(4)(i). The other test unit was subjected to a leak rate test as specified in 173.469(a)(4)(i) and a heat test as specified in 49 CFR 173.469 (b)(4). Each test unit was leak tested before and after these respective tests. The leak rate tests performed were helium back-pressure tests and bubble tests, as specified in ANSI N14.5-2014. The measured leak rates were converted to standard condition leak rates as specified in ASTM E 493. The determined standardized leak rates from the test and calculation for both test units met the requirements for special form certification.

The testing was performed by or under the direction of the Oak Ridge National Laboratory (ORNL) Package Testing Program (PTP).

1. INTRODUCTION

Two prototype ZiPCans designed to contain uranium (henceforth referred to as *UZiPCans*), were tested to demonstrate compliance with the requirements of

- Title 49, Code of Federal Regulations (CFR), Part 173.469, *Tests for Special Form Class 7 (Radioactive) Materials*, and
- Title 10, Code of Federal Regulations, Part 71.75, Qualification of special form radioactive material and ISO2919:1999(E) Radiation protection –Sealed radioactive sources General requirements and classification.

These prototypes served as test units and are identified as TU-1 (C1-0290), and TU-4 (OPSF1).

The 10 CFR 71.75 requirement states:

(d) A specimen that comprises or simulates radioactive material contained in a sealed capsule need not be subjected to —

(1) The impact test and the percussion test of this section, provided that the specimen is:
 (i) Less than 200 grams and alternatively subjected to the Class 4 impact test prescribed in ISO 2919:1999(E) "Radiation protection –Sealed radioactive sources – General requirements and classification"

Since the ZipCan design is less than 200 g, the TU-4 U ZiPCan was subjected to a Class 4 impact test only as prescribed in ISO2919:1999(E) in lieu of the percussion and impact test described in 49 CFR 176.469 (b).

The ISO2919:1999(E) impact test is specified below:

7.4 Impact Test

7.4.1 Apparatus

7.4.1.1 Steel hammer, the upper part of which is equipped with a means of attachment, and the lower part of which shall have an external diameter of (25 ± 1) mm and a flat striking surface with its outer edge rounded to a radius of (3.0 ± 0.3) mm.

The center of gravity of the hammer shall lie on the axis of the circle, which defines the striking surface; this axis itself passing through the point of attachment. The mass of the hammer for each test class is given in Table 2.

7.4.1.2 Steel anvil, the mass of which is at least ten times that of the hammer. It shall be rigidly mounted so that it does not deflect during impact and shall have a flat surface, large enough to support the entire sealed source.

According to Table 2 from ISO 2919:1999(E), the weight of the steel hammer for the Class 4 impact test shall be "2 kg from 1 m or equivalent imparted energy." Based on the equation of potential energy to total imparted energy, the imparted energy shall be 19.61 Joules = $2 \text{ kg} \times 9.81 \text{ m/s}^2 \times 1 \text{ m}$. Additionally, TU-4 subsequently was subjected to a leak rate test before and after each of the tests described above to determine test outcome, as follows:

Leak Rate Test (49 *CFR* 173.469 (*a*)(4)(*i*))

Demonstration of leak tightness of 10^{-4} torr-1/s (3.1×10^{-4} atm-cm³/s) based on air at $25^{\circ}C$ ($77^{\circ}F$) and one atmosphere differential for solid radioactive content.

TU-1 underwent one heat stress test, as well as leak rate testing, as described above, before and after the heat stress test:

Heat Stress Test (49 CFR 173.469 (b)(4)):

The specimen must be heated in air to a temperature of not less than $800^{\circ}C$ (1475°F), held at that temperature for a period of 10 minutes, and then allowed to cool.

All tests (impact test, heat stress tests, and leak rate tests) were performed by or under the direction of the Oak Ridge National Laboratory (ORNL) Package Testing Program (PTP). This report provides a detailed description of the test methodologies and results.

1.1 DESCRIPTION OF THE U ZIPCAN

The inner container of the U ZiPCan is a titanium triangular assembly with four threaded ³/₃₂-inch fill holes over four inner triangular cavities matted with a 0.05-inch thick zirconium oxide felt. Uranium heat stress test unit (TU-1) was manufactured by depositing drops of a nitrate solution into the inner triangular

cavities through the fill holes. After the solution was deposited, the filled triangular assembly was slowly heated to concentrate the liquid to a dry salt and then was subsequently fired in a furnace to convert the uranium material to an oxide. Four titanium screws were then inserted into the threaded fill holes. The assembly was then placed in a stainless steel triangular encasement, and fitted with a lid which had been welded with a tungsten inert gas (TIG) arc welder. The U ZiPCan is shown in parts in Figure 1.1 and Figure 1.2, and the impact test unit is shown in Figure 1.3.

A loaded U ZiPCan containing a maximum of 3.2 g (element weight) of uranium oxide was used for the heat test, and an unloaded ZiPCan was used for the impact test. The isotopic distribution of TU-1 is shown below.

ORNL U ZiPCan load information					
Tile/serial No.	C1-0290		Weight, g	Weight, fraction	
Total weight	35.783 g	²³⁴ U	3.146E-05	9.831E-06	
UO3/U3O8 weight	4.58 g	²³⁵ U	1.295E-03	4.048E-04	
Uranium weight	3.2 g	²³⁶ U	3.173E-05	9.916E-06	
Isotopic mass date	3/23/2017	²³⁸ U	3.199E+00	9.996E-01	

 Table 1.1. Isotopic distribution of the heat test unit, TU-1 (C1-0290)

Figure 1.1. Top view of the U ZiPCan triangle encasement.

Figure 1.2. Side assembly view.

Figure 1.3. U ZiPCan triangle encasement test unit.

1.2 DESCRIPTION OF QUALITY ASSURANCE ACTIVITIES

All DOE contractors are required by contract with the US Government to comply with DOE Order 414.1D, 10 CFR 830.120 and/or other specific quality assurance (QA) requirements. Specific QA programs apply to each of three primary phases of effort (design, manufacture, and certification testing). ORNL was responsible for the design process, and the applicable QA program is the ORNL Quality Management System, *Quality Assurance Program Description*. The Radiochemical Engineering Development Center at ORNL was responsible for all manufacturing activities, and the two applicable QA programs are the Quality Management System described in NMP-QM-1, Rev. 1, *Quality Manual for the Nuclear Material Processing Group*, and the Nonreactor Nuclear Facility Division NNFD-017-C, Rev. 1, *NNFD Fabrication Control Procedure*.

For the certification testing process, each test was conducted in accordance with ORNL/NTRC-074 entitled *Test Plan for the Special Form Qualification Testing of the U ZiPCan Triangle Encasement* (available upon request) and the appropriate procedures listed in the test plan. The QA aspects of activities in the test plan are controlled by the PTP QA requirements of 10 CFR 830.122. The safety aspects of activities in this test plan are controlled by the ORNL Research Hazard Assessment and Control (RHAC) Research Safety Summary (RSS) 1082, titled *General Use and Package Testing Activities Conducted in the NTRC Packaging Research Facility*. Additionally, all testing performed by PTP is conducted under the QA plan outlined in NTRC-PRF-QAP-001, Rev. 2, *Quality Assurance Plan for the Package Testing Program*.

1.3 ZIPCAN TEST MATRIX

TU-1 is a U ZiPCan loaded with 3.2 g of uranium Table 1.2 provides the sequence of the tests and processes performed on each test unit. The number in the cell indicates the sequence in which the process or test was performed on the test unit. TU-4 is a U ZiPCan without radioactive material. It was deemed that the radioactive material provided a negligible amount of support to the titanium structure. The weight added is also irrelevant due to substitution of the ISO class for impact test as applicable to the drop test.

Test on mesons description	Test unit			
Test or process description	TU-1 (C1-0290)	TU-4 (OPSF1)		
Leak test	1	1		
Impact test (ISO 2919)	-	2		
Heat test	2	-		
Leak test	3	3		

Table 1.2. Sequence of Tests and Processes for the U ZiPCan

1.4 TEST DATA RECORDS

This report documents the tests performed and measurements observed from the U ZiPCan testing. The general data types for these tests are:

- manually derived measurements and observations,
- digital still photography, and
- video recording of the drop and percussion tests.

The primary recording media for each of the general types of data are:

- procedure checklists, data sheets and test forms for data, measurements, and observations,
- computer files (JPG format) of the digital photography, and
- computer files (MPG format) of the video recordings.

The completed data sheets and procedure checklists have been scanned into a digital format and are available upon request. Photographs are presented in the main body of this document as appropriate.

1.5 DEVIATIONS FROM THE TEST PLAN

Per the test plan (ONRL/NTRC-074), 3 test units were subjected to the preheat leak test and a heat test.

Table 1.3 provides a detailed sequence for the tests conducted on Test Units TU-1, TU-2 and TU-3.

Test Unit TU-1, TU-2, TU-3 Sealed encapsulated specimen with radioactive material (U)	Acceptance criteria
Test sequence #1: Leaktightness	Leak Test - 49 CFR 173.469 (a)(4)(i) ^{a,b,c}
	Leak pretest to ensure that there is no leakage prior to performance of
	heat test.
Test sequence #2: Heat test	Heat Test - 49 CFR 173.469 (b)(4): The specimen may not melt or
	disperse when subjected to the heat test
	Reference 49 CFR 173.469 (a)(3) ^{<i>a</i>}
Test sequence #3: Leaktightness	Leak Test - 49 CFR 173.469 (a)(4)(i) ^{a,b,c}
	Leakage post-test to ensure that there is no leakage after heat test.

Table 1.3. Detailed sequence of tests and processes for Test Units 1–3 (TU-1 through TU-3)

^a After each test, leaktightness of the specimen must be determined. Reference 49 CFR173.469(a)(4).

^b Perform test for leaktightness per 49 CFR 173.469 (a) (4) (i). NOTE: The test specimen capsule must be fabricated from corrosion-resistant material that is resistant to corrosion by water and must have an internal void volume greater than 0.1 millimeters. Leaktightness testing acceptance criteria must demonstrate a leak tightness of 10^{-4} torr-1/s (1.3×10^{-4} atm-cm³/s) based on air at 25°C (77°F) and one atmosphere differential pressure for solid radioactive content. This test method is more sensitive than the leaching assessment methods specified by 49CFR 173.469 (4)(c).

^c Leaching assessment methods for indispersible solid material do not apply. Reference 49 CFR 173.469 (4)(i).

Table 1.4 shows data for the test units that were subjected to the heat test with the corresponding weigh of radioactive material. The post leak test was first performed on the heavy test unit (C1-0290), and that test unit passed the leak test; therefore, leak tests were not performed for the remaining heat test units because the leak test results for the 3.2 g test unit will cover the 2.5 g and 1.7 g test unit. This test report only reports the leak test results and heat test results of the 3.2 g test unit (C1-0290).

Test unit SN	Test unit number	Uranium weight (g)
C1-0290	1	3.2
C1-0288	2	2.5
C1-0289	3	1.7

Table 1.4. Heat Test Units mass distribution

2. PRE-TEST ACTIVITIES

The test units were delivered for testing in a ready-to-test condition, so there were no specific pretest activities.

3. SPECIAL FORM TESTS

Special form testing requirements are specified in 49 CFR 173.469 (b), 10 CFR 71.75, and ISO 2919:1999(E). For this design, three tests were required: the Class 4 impact test per ISO 2919:1999(E), a heat test, and a leak test. The bending test was not required because the length-to-width ratio of the design is not greater than 10. After each test, each test unit was subjected to a helium leakage rate test and a bubble test as specified in 49 CFR 173.469(a). Each test performed and the results of these tests are described below.

3.1 IMPACT TEST (ISO 2919:1999(E))

Test unit 4, TU-4 (OPSF1) was subjected to the ISO 2919:1999(E) Class 4 impact test, which was carried out at the indoor drop pad located at the National Transportation Research Center in Knoxville, Tennessee. This drop pad has a total mass of ~13.6 metric tons and meets the specifications for the impact test target according to the *Design and Certification of Targets for Drop Testing at the NTRC Package Research Facility Rev. 0*, May 2003, ORNL/NTRC-001. The test was performed according to the procedure outlined in the *Test Plan for the Special Form Qualification Testing of the U ZiPCan Triangle Encasement*, ORNL/NTRC-074, Section 3.7.1. Testing activities and results were recorded on Test Form 1 from the test plan.

The TU-4 U ZiPCan was centered on the indoor drop pad. A 1-inch diameter steel billet, weighing 2 kg was placed on the release mechanism and raised to a height of 1 meter. A calibrated meter stick was used to measure the height from the bottom surface of the billet to the top surface of the U ZiPCan (Figure 3.1). When ready, the steel billet was released so that the billet made a direct impact on the vertex of TU-4.

Figure 3.1. Impact billet 1 m above the ZiPCan.

When released, the billet appeared to impact TU-4 squarely on the vertex. The impact of the billet resulted in a slight indentation at the point of impact. Figure 3.2 photos show TU-4 before and after the impact test. After the impact test, TU-4 was subjected to a fine and gross leak test as described in Section 3.3.

Before Impact

After Impact

Figure 3.2. Before and after impact of the U ZiPCan.

3.2 HEAT TEST

The 49 CFR 173.469(b)(4) heat test was performed on the TU-1 (C1-0290) test unit which had been loaded with 3.2 grams of depleted uranium. The special form tile loading log can be found in ORNL Log Book H00034-RSTD Fabrication. The uranium was depleted in the Y-12 National Security Complex (NSC) cauldrons to a high percentage of ²³⁸U as batch number D7. The isotopes for the batch D7 uranium can be found in Table 1.1. The test was conducted in the ORNL Radiochemical Engineering Development Center (REDC), Building 7930, Lab 212 Fume Hood (IE-960). The safety aspects of activities for this heat test are controlled by the ORNL Research Hazard Assessment and Control (RHAC) Research Safety Summary (RSS) 919, *REDC Bldg. 7930 Development Laboratory Operations*. The furnace used was a Thermolyn Model #F47925, Serial No. 0152853201110405, property number 18334 (Figure 3.). The furnace has a noncalibrated integrated controller. Two 12-inch Type K thermocouple probes (BF3874 and BF3F05) were calibrated before the test and inserted into the top of the furnace and extended into the center of the furnace cavity (Thermocouple 1 - BF3874; Thermocouple 2 - BF3F05 Figure 3.4). The probe was connected to a calibrated fluke thermometer B1332, Serial No. 36370410WS, with a calibration due date of 9/27/2017.

Figure 3.3. Heat test furnace in REDC.

Job# 3054371						Tech: 30220
Date: 1/24/17	Technical Support Department				Std: A001277	
	Ins	trument Da	ta Continua	tion Sheet		M210101
						A002021
Furnace	Standard		UUT Reading			
	Type S	BF3874	Error	BF3F05	Error	
21.5	21.5	20.9	-0.6	21.1	-0.4	
750.0	754.1	755.0	0.9	754	-0.1	
800.0	803.5	804.5	1.0	803.6	0.1	
850.0	854.0	855.0	1.0	854.4	0.4	
900.0	904.3	905.4	1.1	905.1	0.8	
950.0	955.4	956.9	1.5	956.3	0.9	

Thermocouple 1 - BF3874; Thermocouple 2 - BF3F05

Figure 3.4. Type K thermocouple calibration record.

The test was performed according to the procedure outlined in the *Test Plan for the Special Form Qualification Testing of the U ZiPCan Triangle Encasement*, ORNL/NTRC-074, Section 3.7.2, and testing activities and results were recorded on Test Forms 2, 3, and 4 from the test plan. The furnace was preheated above 800°C for three hours. After a three-hour heat soaking period at a constant temperature of 980°C, the furnace door was opened, and TU-1 was inserted into the furnace cavity. The furnace door was closed, and when both thermocouples had a furnace reading above 800°C, the 10-minute thermal test was started (Figure 3.5). Thermocouple 1 is BF3874, and thermocouple 2 is BF3F05. A noncalibrated stop watch was used to record the temperatures from both thermocouples every 30 seconds for 10 minutes. After the 10-minute period, the door was opened, and TU-1 was removed from the furnace and allowed to cool naturally. The thermal test resulted in an out-of-plane bulge (pillow effect) of the test unit, which is shown in Figure 3.6. There was a discoloration on the outer surface of the test unit. The test unit was helium leak tested and bubble tested after the thermal test.

U ZipCan Thermal Test (C1-0290)

Figure 3.5. Heat test temperature profile.

Figure 3.6. U ZipCan post heat test results.

3.3 LEAK RATE TESTING

3.3.1 Evacuated Envelope (with Back Pressurization)

Leak rate tests that met the test requirements of (49 CFR 173.469 (a)(4)(i)) were performed individually on each test unit before after each special form test. The leak rate tests were performed using ANSI N14.5-2014 American National Standard for Radioactive Materials – Leakage Tests on Packages for Shipment, Table A.1, Test Description A.5.5, Evacuated Envelope (with back pressurization) and Test Description A.5.6 Gas bubble techniques. The American National Standards Institute (ANSI) document indicates that the back-pressure method

"... is ideal for welded capsules from very small sizes up to the sizes limited by the dimensions of the pressurizing chamber," and that the "nominal test sensitivity = 10^{-3} - 10^{-8} ref-cm/s" and the bubble test method are used for hermetically sealed test specimens.

Section A.5.5 of ANSI N14.5-1997, *Evacuated Envelope with Helium Back Pressure* of the ANSI document references ASTM E 493, *Standard Test Methods for Leaks Using the Mass Spectrometer Leak Detector in the Inside-Out Testing Mode*. This American Society for Testing and Materials (ASTM) standard provides the method for converting a measured leak rate using the evacuated envelope with the helium back-pressure method into the standardized leak rate that must be compared to the pass/fail criteria specified in 49 CFR 173.469(a)(4)(i), which is 10^{-4} torr-l/s $(1.3 \times 10^{-4} \text{ atm-cm}^3/\text{s})$.

The equation provided in Section 11.1.9 of ASTM E493 is:

$$S_{l} = (P_{e}/P_{a}) \times (1 - e^{(-3600*a*T)}) * (e^{(-a*t)}) \times L$$
(1)

where:

 S_1 = indicated (measured) leak rate (cc/s) P_e = bombing pressure of helium (absolute) P_a = atmospheric pressure (absolute) T = bombing time (hours) t = waiting time between bombing and testing (s) L = actual (standardized) leak rate (atm-cc/s) a = L/V where V = internal volume e = 2.71 (natural logarithm).

Since S_I is being measured and the objective is to solve for L, an iterative solver is required to find the solution. The equation was solved using MS Excel. Note that the ASTM standard uses the term *bombing*, while the ANSI standard uses the term *back-pressure*. These terms are synonymous and are used interchangeably in this report.

To solve Equation 1, the internal volume (i.e., void space) within the test units must be known. For the test units, this internal volume consisted of accessible internal void spaces. Based on the dimensions provided by the drawings, along with queried information from the computer aided design software used to create the drawings (to determine the volume of the irregularly shaped Part #2 shown in Figure 1.1), the void volume is 0.6 cc.

Test units TU-1 (C1-0290) and TU-4 (OPSF1) were leak tested at ORNL by certified ASNT Level II and Level III NDT leak testing personnel using the NDE-70 R.6 procedure. See Appendixes D and E for leak tester certification and the leak testing procedure. The test units were leak tested before and after each special form test. The test apparatuses used for these tests employed a spectrometer tuned to detect helium, a calibrated helium leak to calibrate the system, and two separate vessels—one for helium back

pressurization, and a second one for the subsequent helium leakage rate testing under vacuum conditions. Figure 3.7 provides a schematic of the system used for helium back pressurization, and Figure 3.8 shows a schematic of the system used for the helium leakage rate test. Leak rate test variables and results for TU-1 and TU-4 are shown in Table 3.1.

Figure 3.7. Diagram of helium back pressurization test.

He Leak Detector (Including Integral vacuum pump)	
Test Unit	
Vacuum Chamber	

Figure 3.8. Diagram of helium leak testing system.

3.3.2 Gas bubble techniques

The gas bubble test was performed using the methods described in ANSI N14.5-2014, *American National Standard for Radioactive Materials – Leakage Tests on Packages for Shipment*, Table A.1, Test Description A.5.6 (b), Vacuum Bubble. The method involves immersing the test unit in a liquid and then producing a vacuum above the liquid (e.g., water/glycol or isopropyl alcohol) in which the test item is submerged. A leak is indicated by a stream of bubbles (). This method applies to welded capsules. The nominal test sensitivity is 10⁻³ ref-cm³/s (10⁻⁴ Pa-m³/s). Test units TU-1 (C1-0290) and TU-4 (OPSF1) were bubble tested. Table 3.2 shows the results for each of the tests. See Appendixes D and E for leak tester certification and the leak testing procedure.

		Test	unit	
Parameter	TU-4	(OPSF1)	TU-1 (C	1-0290)
	Leak test 1	Leak test 2	Leak test 1	Leak test 2
Void space – V (cc)	1.057	1.057	1.057	2.2
Bombing pressure – Pe (psig)	30.0	50.0	30	30.0
Atmospheric pressure – P _a (psia)	14.69	14.69	14.69	14.69
Bombing time – T (hr)	0.5	1	0.5	0.5
Time between bombing and testing – t (s)	<3,600	<1,800	3,600	3,600
Measured leak rate (cc/s) – S _l (atm-cc He/s)	$2.0 imes 10^{-7}$	5.0 × 10 ⁻⁹	1.7×10^{-7}	7.6×10^{-7}
$\mathbf{a} = \mathbf{L}/\mathbf{V} \ (\mathbf{s}^{-1})$	<9.46 × 10 ⁻⁵	<9.46 × 10 ⁻⁸	$< 9.46 \times 10^{-5}$	<9.46 × 10 ⁻⁵
Standardized leak rate – L (atm-cc He/s)	$< 1.0 \times 10^{-4}$	<1.0 × 10 ⁻⁷	<1.0 × 10 ⁻⁴	<1.0 × 10 ⁻⁴

Figure 3.9. Vacuum bubble test.

	Table 3.2	2. Bubble test results for	r TU-1 and TU-4	
		Tes	st unit	
Parameter	TU-1 ((C1-0290)	TU-4 (0	OPSF1)
	Bubble test 1	Bubble test 2	Bubble test 1	Bubble Test 2
Bubble test pass/ fail	pass	pass	pass	pass

4. CONCLUSION

Two prototype U ZiPCans were subjected to the tests specified in 49 CFR 173.469 and 10 CFR 71.75 (d)(1)(i), ISO 2919:1999(E), Class 4 impact test. One unit was subjected to the impact test and to pre- and post-leak rate tests, the other unit was subjected to the heat test followed by a leak rate test. Each unit easily surpassed the leak rate criteria following each test, each test specimen did not break or shatter when subjected to the impact test, and the specimen did not melt or disperse when subjected to the heat test. This testing process has shown that the design of the U Zirconia Pre-Encapsulated Canister meets Special Form Criteria.

APPENDIX A. U ZIPCAN DRAWINGS

Figure A.1. U ZiPCan engineering drawing.

APPENDIX B. TEST FORMS

	Report Number: 2/19/16-2
LEAK TE	ST REPORT
Test Requested by: S. GARRISSON	Allowable Leak Rate: 21.0 E-4 Std-Atm-cc/s
Work Order Number: 3760A465	Test Pressure Req. Across Boundary: / ATM
Item Tested: 2 ETA TRIANGLES OPSF-1 OPSF-2	Customer: REDC
Technique Used: BomB / BEILSAL Out	Procedure/Rev: NDE 70 R6
EQUL	PMENT
LEAK DETECTOR	STANDARD LEAK
Make and Model: ADIXEN ASM 182 TDF	Manufacturer: VTI Tracer Gas: He
Serial Number: HLD 0860905	Model: VSLT-5-3c-He Sevial Number: TP860 GPPT-7-He-118T BV 211116 TP9384
	Leak Rate: $4.2 \in 4.2 \in 4.2 \text{ Atm-cc/s}$ @ -1 atm @ $21.1 ^{\circ}C$
TEST GAUGES	Correlation Formula: $[1 - (T_{cal} - T_{surf}) C_T] LR$ Temp Coefficient: 3.0 %/°C
Temp Gauges: A001067 Due: 6/25/16	Correlated LR: $4.6 \epsilon^{-6} Atm - cc/s @ -1 atm @ 24.0 °C$
Pressure Gauges: MTE 549 Due:	Calibration Due Date: 9/14/16
RES	ULTS 🕅 Quantitative 🗍 Semi - Quantitative
MACHINE CALIBRATION	SYSTEM TEST CONDITIONS
System Pressure: $1.5 e^{-3}$	System Temperature: 24.0 °C 🔀 Surface [] Internal Gas
Background: $\angle 4.0 \in -1^{\circ}$ Atm-cc/s	delia P Test Boundary: / ATM
Leak Response: 4.6 E ⁻⁶ Atm-cc/s	Tracer Gas: He % Concentration: CALC
Minimum Detectable Leak: 1.0 E-7 Atm-cc/s	System Response Time: < 55
System Sensitivity: 2.0 E-7 Atm-cc/s	System Response: 2.0 E-9 Atm-cc/s
Response Time: <55	Duration of Test: $\sim 30 \mathrm{s}$
Aux. Equipment:	
ACCEPT CREJECT SKETCH / DATA ATTACHED	System Leak Rate: $\frac{\langle 1.0 \varepsilon^{-4}}{Atm} \operatorname{cc/s} (0) = \frac{1}{atm} (0) \frac{24.0}{C} \circ C$
COMMENTS: Pre impaut - Oscar M.	
Test Conducted By: (Print & Sign Name/Level):	Date: Time:

2/19/16

1:10

E.VIDAL E. VIOAC Zree & Vall LTE Form Revision: Attachment A, IDMS: #8094, NDE-70, Rev 06 (07/27/2013), (Att. A only-CN-01 08/18/2015)

BOMBI	NG TEST R	EPORT (Suppleme	nt)
Leak Test Report Number: Z/19/16-2		Allowable Leak Rate:	< 1.0 E ⁻⁴
Item(s) Tested: OPSF-1, OPSF-2 TRACER	GAS BOMB	ING AND LEAK T	EST
Bombing Pressure (psig): 30	Tracer Gas:	He	Bombing Time: > 30 m/N
Waiting Time (Sec): < 3600		Internal Volume (cc):	1.057
Measured Leak Rate: 2.0 E-9	Atm cc/s	Calculated Leak Rate:	∠1.0E⁻⁴ Atm cc/s into vac. @ 24.0 °C
Test Results: X ACCEPT	JECT 🕞	CALCULATIONS / DA	TA ATTACHED

,

COMMENTS:

Test Conducted By: (Print & Sign Name/Level):	Date:
E.VIDAL Zici SVall LTF	2/19/16

L (ASNT/MIL) L(ASTM/CFR) Part 1 Part 2 Part 3 3 - tab or select away from the last entered value and press the calculate button for results 2 - Input only information in bright yellow blocks specific to test Rcalc 1 - Input estimate for "L" in orange block. This esitmate needs only be within a few decades of the expected leak rate. If this calculator fails, the revise estimate closer to measured Q % Difference Ę Intructions for Use: $\left|R = \left|\frac{LP_e}{P_o} \left(\frac{M_A}{M}\right)^{\frac{1}{2}}\right| \times \left|1 - e^{\left[\frac{LT_1}{P_o} \left(\frac{M_A}{M}\right)^{\frac{1}{2}}\right]}\right|$ RESULTS 4.0384E-05 scc/s OPSF-1, OPSF-L 2/19/16 E. VION Low / Nail LT 1.000E-05 scc/s 9.520E-01 4.329E-04 2.427E-02 1.057 cc 7.916E-05 scc/s 7.92E-05 scc/s 6.11E-05 scc/s 1.00E-05 scc/s 14.696 psia 22.8% 3600 sec 1800 sec 30 psig 28.7 g/mol 4 g/mol Corrected for tracer concentration Ignore this number Equivalent air leak rate (estimate value for calc to work) Amount of helium at the end of the dwell Calc amount of helium entering package during bomb Converts true air leak to helium leak rate Internal volume Dwell time (from bomb chamber to test start) Time of exposure (bomb time) MW Helium MW of air Bomb Chamber Pressure Measured helium leak rate (Q) **ASNT Formula** Atomspheric pressure ы Х $- \frac{LT_2}{VP_o} \left(\frac{M_A}{M}\right)^{\frac{1}{2}}$ Note: formula is modified for uniformity; a = L/V and 3600 converts hours to seconds Rcalc Ę Z 11 3.11571E-05 scc/s 6:108E-05 scc/s 1.000E-05 Ignor this number ASTM/CFR Formula | | | Corrected for tracer gas Equivalent air leak rate $\left(\frac{\tilde{r}}{V}\right)T_{1}$ Х 0 7 | 1 T_2

						Report Number:	<u>2/22/16-(</u>
		LEAK T	EST REPOI	RT - BUBBL	E TEST		
Test Requested	Iby: J.GA	RFISON		Customer:	RENC		
Work Order Ni	imber: 37	60A 465		Procedure:	NDE 70 R(\$	
Item Tested:	2 ER. TRIANG	LEJ OPSF-(OPSF-2	Test Pressure R	equired: 15	T INHO	
Technique Use	d: VAL BO	X	••• •	Liquid Media L	Ised: IMMERS	IT CIM 150	
Test Gas Used:	VAC			Liquid Applica	tor Type: I Mi	NERSION	· · · · · ·
Inspection Ligi	ht Intensity:	>100 FC		Post Cleaning	Method: DEw	IN HZO RIN	sE
Other Apparat	us Used: FLA	tsticker					
Direct Pressu	re Technique			Vacuum Press	sure Techniqu	e 🖄	
Component Lii	mits of Test:			·			
		•					
					www.phi/w.gd==1.1		
Component Te	est Site Bu	-06 5500		Component In	stallation Site		
	Gau	ıges		Test Pi	ressure	Tempe	erature
Mfg	ID No	Calibration Date	Range	Beginning	End	Beginning	End
	A002126	8/26/15	030 in Ha	15 INHa	15 in Ha	AMBIENT	AMBIENT
Temperature N	Aeasuring Devic	e		4			
Mfg		Model		Range	-	I.D. Number -	
RESULTS	ACCEP	T []REJECT	P	OST CLENING I	PERFORMED:	⊠Y ∏N
Comments:	AMBIENT SI	Hoe MIR ~ 7	0°F			anna a far far i sin a	
					×		
Test Conducted By:	(Print & Sign Name/I	Level):				Date: /	1
EVIDAL	Im S	Vall	1 <u>7</u>			2/22	1/4

TEST FORM 1 – Impact Test ISO 2919

Test Plan ORNL/NTRC-067

Test Unit OPSF-1

VERIFIED	TASK
<i>V</i>	The weight of the impact billet has been measured and verified to be 2 kg or greater:
	Measured weight of billet 2.000 (kg)
	Scale used for measurement: Mettler Toledo Calibration due: Metrology Scale
<i>V</i>	The calibration of the 1-m ruler has been verified:
	1-m Ruler Equipment # A ØØ1146 Calibration due: 11/3116
V	The test unit with supporting device has been placed (centered) on NTRC indoor drop pad.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	The drop test release mechanism has been attached to the crane.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	The impact billet has been captured by the release mechanism.
V	The billet has been centered over the test unit and a picture has been taken.
V	The billet has been raised to height of 1 meter over the highest point of the test unit and a picture has been taken.
~ ~	The billet was released and impacted the test unit.
	All observable damage to the test unit caused by the impact test has been recorded and pictures of the test unit after the
	impact test have been taken.
	- impact

Comments: Weight	of	Test Unit	c	579	\square
V	1	Vertex	Im	pact	

I certify that the above tasks have been performed and that the observations and comments are correct.

3/2/2016 Date indya Checked by festing Technician

'b Date

*All photographs will be uniquely identified with test unit, date and time to ensure that the proper sequence can be reconstructed

			Report Number: 3/9/16-2
	LEAK TES	ST REPORT	
Test Requested by: C. BLESSINGEZ		Allowable Leak Rate: $\leq /.$	oe-7 Std-Atm-cc/s
Work Order Number: 3760A.465		Test Pressure Req. Across Bot	indary: 1 Arm
Item Tested: OPSF-1		Customer: ZEDC	· · · · · · · · · · · · · · · · · · ·
Technique Used: BOMB/BELL SAR	Inside - Out Outside - In	Procedure/Rev: NDE 7	0 R.C
	EQUU	PMENT	
LEAK DETECTOR		STAN	VDARD LEAK
Make and Model: ADIXEN ASM 182 TT)7	Manufacturer: VT1	Tracer Gas: He
Serial Number: HLD 0860905		Model: GPPT-HE -118 T	Serial Number: TP 5754
		Leak Rate: 5.37 E	⁻⁸ Atm-cc/s @ atm @_ <u>23.4</u> °
TEST GAUGES		Correlation Formula: [1 - (T _{cal} - T _{surf}) C _T] LR	Temp Coefficient: 2,0 %/°
Temp Gauges: April 957	Due: 6/10/11	Correlated LR: 5.36 E	8 Atm-cc/s @ -1 atm @, 23.3 °,
Pressure Gauges: MTE-549	Due:	Calibration Due Date:	ozhalin
	RES	ULTS 🕅 Quantitative	e 🗌 Semi - Quantitative
MACHINE CALIBRATIC	N ·	SYSTEM 1	'EST CONDITIONS
System Pressure: $1.5 \in -3$ mb		System Temperature: 23.4	°C 💢 Surface 🗌 Internal Gas
Background: $7-3 \in -10^{-10}$	Átm-cc/s	delta P Test Boundary:	ATTN
Leak Response: $5.4 \in -8$	Atm-cc/s	Tracer Gas: He	% Concentration: FA
Minimum Detectable Leak: $1.0 \in 9$	Atm-cc/s	System Response Time:	55
System Sensitivity: 2.0 F-9	Atm-cc/s	System Response: 5.0	E-9 Atm-cc/s
Response Time: < 5<		Duration of Test: ~ 1	min
Aux. Equipment:		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
ACCEPT REJECT SKETCH/	DATA ATTACHED	System Leak Rate: $\angle /.oe^{-i}$	Atm cc/s @ _ [_ atm @ 23. 7 °(
COMMENTS: FINE LT - Po.	ST DROP TEST	/IMPACT TEST	<u>.</u>

est Conducted By: (Print & Sign Name/Level):	Date:	Time:	
E. VIOM Zen SVall LITE	3/9/16	3:00	
orm Revision: Attachment A, IDMS: #8094, NDE-70, Rev 06 (07/37/2015), (Att. A only-CN-01 08/18/2015)			
		*	

B	OMBING TEST RI	EPORT (Suppleme	nt)
Leak Test Report Number: 3/9/16 - 2		Allowable Leak Rate:	<u>< 1.0 E-7</u>
Item(s) Tested: OPSF-1			
TRA	CER GAS BOMB	ING AND LEAK T	EST
Bombing Pressure (psig): 50	Tracer Gas:	He	Bombing Time: > / Hz
Waiting Time (Sec): < 1800		Internal Volume (cc):	1.057
Measured Leak Rate: $5.0 \in -9$	Atm cc/s	Calculated Leak Rate:	<1.0 ε ⁻⁷ Atm cc/s into vac. @ 23.4 °C
Test Results: XACCEPT	T REJECT	CALCULATIONS / DA	TA ATTACHED

COMMENTS:

Test Conducted By: (Print & Sign Name/Level): E.VIDAL Zui SVIII LT

Date: 3/9/16

	ASN'I Formula	AS I M/CFR Formula
R 5.00E-07 scc/s	Measured helium leak rate (Q)	
Pe 50 psig	Bomb Chamber Pressure	
Po 14.696 psia	Atomspheric pressure	
Ma 28.7 g/mol	MW of air	
M4 g/mol	MW Helium	
	Time of exposure (bomb time)	
	איפון זוווים (ורסוון ססווןם כחמוזוטבין גם גבאני גומיגן) Internal volume	
L <u>9.450E-06</u> scc/s	Equivalent air leak rate (estimate value for calc to work)	L <u>6.664E-06</u> scc/s Equivalent air leak rate
Part 1 8.612E-05	Converts true air leak to helium leak rate	
Part 2 5.849E+03	Calc amount of helium entering package during bomb	Lcf 47051E-06 scc/s Corrected for tracer gas
Part 3 9.971E-01	Amount of helium at the end of the dwell	
Rcalc 5.022E-07 scc/s	Ignore this number	Rcalc 5.030E-07 Ignor this number
Lcf 6.6722E-06 scc/s	Corrected for tracer concentration	
RESULTSL (ASNT/MIL)9.45E-06 scc/sL(ASTM/CFR)6.66E-06 scc/s% Difference29.5%		
ſ		Note: formula is modified for uniformity; $a = L/V$ and 3600 converts hours to seconds
$R = \left[rac{LP_e}{P_o} \left(rac{M_A}{M} ight)^{rac{1}{2}} ight] imes$	$\left\{1-e^{\left[\frac{LT_{1}}{\nu P_{o}}\left(\frac{M_{A}}{M}\right)^{\frac{1}{2}}\right]}\right\}\times e^{\left[\frac{LT_{2}}{\nu P_{o}}\left(\frac{M_{A}}{M}\right)^{\frac{1}{2}}\right]}$	$R = \frac{LP_e}{P_o} \left[1 - e^{-\left(\frac{L}{F}\right)r_1} \right] \times \left[e^{-\left(\frac{L}{F}\right)r_2} \right]$
Intructions for Use: 1 - Input estimate for "L" in orange blo 2 - Input only information in bright yei 3 - tab or select away from the last en	ock. This esitmate needs only be within a few decades of the exp llow blocks specific to test tered value and press the calculate button for results	ected leak rate. If this calculator fails, the revise estimate closer to measured Q

0P5F-1

Report Number: <u>3/10/16 - 2</u>

.

<u> </u>						Report Number:	3/10/16-2
		LEAK T	EST REPO	RT - BUBBI	E TEST		
Test Requested	d by: C. BLES	SINGER		Customer: 💡	EDC		
Work Order Number: 3760 A465			Procedure:	NDE 70 R.	6		
Item Tested:	OPSF-1			Test Pressure R	equired: 15	"Ha	
Technique Use	ed: VAC Bo	SX		Liquid Media L	Ised: IMME	PSIT CIMZ	00
Test Gas Used.	VAC			Liquid Applica	tor Type: 1	MMERSION	<u>. </u>
Inspection Lig	ht Intensity:	>100FC		Post Cleaning	Method: Di	EMIN. HOO BI	NSE.
Other Appara	tus Used: Fi	LASHLIGHT	MIREOR			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Direct Pressu	re Technique			Vacuum Pres	sure Techniqi	1e (M	
Component Li	mits of Test:						
				L			
Component To	est Site BLXS	530		Component In	stallation Site		
	Gai	uges		Test Pr	ressure	Temper	rature
Mfg	ID No	Calibration Date	Range	Beginning	End	Beginning	End
PLIMP (A. F.	Aran 2126	shalls	0-15.04	15.01	15.111	(~68°F) Annual	Lapuror
I CIMI GAGE	1002126	0125113		1.5 / N H-9	<u>/3 /№/ŋ</u>	i in the second se	//m(B)en{
Temperature	 Aeasurina Devid	 Ce					
Mfg.	neusanng bern	Model		Range		I.D. Number	
RESULTS	ACCEP	T]REJECT	P	OST CLENING.	PERFORMED:	₫ Υ <u>□</u> Ν
Comments:							
Test Conducted By:	Test Conducted By: (Print & Sign Name/Level): Date:						
E.VIDAL	Emil.	Viel	LIT			3/10/	16
	-	-					

Report Number: 11/22/16 - [

	LEAK TES	T REPORT		
Test Requested by: >. CARELSON		Allowable Leak Rate: < 1.0 E-4 Std-Atm-cc/s		
Work Order Number:		Test Pressure Req. Across Boundo	ary: 1 ATM	
Item Tested: 4 ER. RETO SPELIAL	WEM CAPSULES	Customer: RSTD		
Technique Used: BOMB / BELL > AR	Inside - Out	Procedure/Rev: NDE 70	R.6	
	EQUII	PMENT		
LEAK DETECTOR		STANDA	ARD LEAK	
Make and Model: AD IXEN ASM 34	10	Manufacturer: VT(Tracer Gas: He	
Serial Number: HLD 1601393		Model: VSLT-5-3C-He	Serial Number: TP860	
		Leak Rate: <u>4.826-</u> 4	tm-cc/s @ atm @ _2Z_1_°C	
TEST GAUGES		Correlation Formula: [1 - $(T_{cal} - T_{surf}) C_T$] LR	Temp Coefficient: 3.6 %/°C	
Temp Gauges: A001957	Due: 6/22/17	Correlated LR: <u>4.56 E⁻⁶Atm-cc/s @ -1</u> atm @ <u>20.3</u> °C		
Pressure Gauges: MTE 549	Due:	Calibration Due Date:	9/9/17	
	RES	ULTS 🔀 Quantitative	Semi - Quantitative	
MACHINE CALIBRATI	ON	SYSTEM TEST CONDITIONS		
System Pressure: $5.0 \in -3$ Mb		System Temperature: 20.3	°C 🕅 Surface 🦵 Internal Gas	
Background: 2.0 E-10	Aim-cc/s	delta P Test Boundary: _ 1 A	TM	
Leak Response: 4.5 E-6	Atm-cc/s	Tracer Gas: He	% Concentration: CALC	
Minimum Detectable Leak: $1.0 \in ?$	Atm-cc/s	System Response Time:	MIN	
System Sensitivity: $2.0 \in -7$	Atm-cc/s	System Response: 1.7 E	-7 Atm-cc/s	
Response Time: 🔨 /O s		Duration of Test: 90 s		
Aux. Equipment;				
KACCEPT TREJECT KSKETCH.	/ DATA ATTACHED	System Leak Rate: . 0 E- 4</td <td>tm cc/s @ atm @ <u>20.3</u>°C</td>	tm cc/s @ atm @ <u>20.3</u> °C	
COMMENTS: 3/N: CI-028	°6, 288, 289	, 290 FINE	LT	

Test Conducted By: (Print & Sign Name/Level):	Date:	Time:
F.VIDAT 2- INall LT	11/22/16	1:15
Form Revision: Attachment A IDMS: #8094. NDE-70. Rev 06 (07/27/2015). (Att. A only-CN-01 08/18/2015)		

Form Revision: Attachment A, IDMS: #8094, NDE-70, Rev 06 (07/27/2015), (Att. A only-CN-01 08/18/2015)

BOMBI	NG TEST R	EPORT (Suppleme	nt)
Leak Test Report Number: 11/22/16-1		Allowable Leak Rate:	< 1.0 E-4
Item(s) Tested: 4 EA. SPECIAL FORM	CAPSUL	EJ	ŦST
Bombing Pressure (psig): 30	Tracer Gas:	He	Bombing Time: > 1800 s
Waiting Time (Sec): < 3600 s		Internal Volume (cc):	1.057
Measured Leak Rate: 1.7 E-7	Atm cc/s	Calculated Leak Rate:	< 1.0 € ⁻⁴ / _{Atm} cc/s into vac. @ <u>70.3</u> °C
Test Results: ACCEPT	JECT []	CALCULATIONS / DA	TA ATTACHED

COMMENTS:

Test Conducted By: (Print & Sign Name/Level): <u>E. VIOR</u> <u>Inc</u> <u>SVill</u> <u>LT</u>

Date: 11/22/16

.

						Report Number	11/22/16-2
		LEAK T	EST REPO	RT - BUBB	LE TEST		
Test Requested by: J. GAERSON				Customer:	RSTD		
Work Order N	Number:			Procedure:	NDE 701	≥.¢	
Item Tested: 4 EA. SPELIAL FORM CARSULES				Test Pressure	Required:	-15 "Hay	
Technique Used: Vac Box			Liquid Media	Used: IMMG	RSIT CIM 200	1 @ 20% som	
Test Gas Used: VAL			Liquid Applicator Type:				
Inspection Li	ght Intensity:	> 100FC		Post Cleanin	g Method:	RINSE / WIPE	
Other Appare	atus Used: 🛛 🗲	ASHLISH	-				
Direct Press	ure Technique			Vacuum Pro	essure Techni	que 🗶	
Component	Test Site _ 76	06 A		Component	Installation Si	te _	
	Gau	iges		Test Pressure		Temp	erature
Mfg	ID No	Calibration Date	Range	Beginning	End	Beginning	End
GAST	A002124	8/11/16	0-3010Hg	-151m Hg	-15 ml-	20.3 °c	20.3°C
 Temperature	Measuring Devic	е		L		L	
Mfg. Ome	7-7- 7-7	Model HH3	64	Range K.	TYPE	I.D. Number Ac	201951
RESULTS	X ACCEP	r]REJECT		POST CLENIN	G PERFORMED:	KIY DN
Comments:	C1-0	286,288	,289,29	0		D-tu:	
Test Conducted B	ly: (Print & Sign Name/l	evel):	17			Date:	
E. VIOAC	- aus	in	t-11-			11/00/	/6

TEST FORM 2 – **Thermal Test Checklist**

Test Plan <u>ORNL/NTRC-074</u> <u>Rev. 0</u>

Test Unit | - C 10290

TASK
The test unit tray has been placed in the furnace.
Two calibrated Type K thermocouples have been installed in the working area of the furnace and attached to the Fluke
thermocouple reader.
Fluke Equipment # $B1332$ Calibration Due: $9/27/7017$
The furnace doors has been closed and the furnace has been turned on with a set point of 850° C.
Furnace Equipment # 18334 Calibration Due: No Cal (eCold
Thermocouple readings have been made every 30 minutes for at least 3 hours.
Any changes in the furnace set point during the three-hour preheat period have been recorded on TEST FORM 5.
Just prior to test unit insertion, a final preheat temperature recording was made.
The furnace door has been opened, the test unit inserted, the furnace door closed and the furnace activated with a set
point of 850° C (1560° F) (or as adjusted during the preheat process).
When both thermocouple readings have reached 800° C (1475° F), the 10-minute thermal test was started.
Thermocouple readings were taken every 30 seconds for the duration of the 10-minute thermal test.
Adjustments were made to the furnace set point as directed by the test director.
When the 10-minute test period was finished, the furnace was turned off and furnace door was opened to the maximum
extent possible.
As soon as conditions permitted, the test unit was removed from the furnace and allowed to cool naturally.
Any deformation or other unusual circumstances regarding the test or the test unit was recorded.
CI-0290 Furnare Hood IE 960
Set - 850°C IC's and Fluke are
TCI-856°C TCZ-861°C Calibrated V

I certify that the above tasks have been performed and that the observations and comments are correct.

Testing Technician

<u>1/25/17</u> Date Matthew R Feldman Checked by

8/18/2017

Date

*All photographs will be iniquely identified with test unit, date and time to ensure that the proper sequence can be reconstructed

TEST FORM 3 – Thermal Test Preheat Data Sheet

Test Plan <u>ORNL/NTRC-074</u> Rev. 0

Test Unit | - C1-0290

TASK

Record the temperature in the furnace every thirty (30) minutes for the duration of the preheat (at least 3 hours):

Time	Thermocouple 1 (°	Thermocouple 2 $\begin{pmatrix} \circ \\ \end{pmatrix}$
11:00	859	863
11:30	856	861
12:00	856	861
12:30	856	861
1:00	85 L	861
1:30	856	861
2:00	856	861

Comments:	Three	hour	ple head	above	850°C	
	6		V			
	Theinoco	vole 1	= BF3874			
	1	1				
	Thermoro	ple 2:	BF3F05			
		t				

I certify that the above tasks have been performed and that the observations and comments are correct.

Matthew R Feldman 7 27 8/18/2017 1 Checked by Date Testing Technician Date

*All photographs/movies will be uniquely identified with test unit, date and time to ensure that the proper sequence can be reconstructed

TEST FORM 4 – Thermal Test Data Sheet

Test Plan <u>ORNL/NTRC-074</u> <u>Rev. 0</u>

Test Unit_CI-029D

TASK

Record the temperature in the furnace every 30 seconds for the duration of the test:

Time	Thermocouple 1 ${}^{\circ}\!{\cal C}$	Thermocouple 2 °
Ó	830	849
30	851	555
/00	851	463
130	850	861
200	849	861
230	849	861
300	849	861
330	84९	861
400	849	860
430	850	861
500	850	860
530	851	860
600	852	860
630	852	860
700	853	860
730	853	861
800	854	860
830	854	860
480	854	860
930	855	861
1000	855	861

Fune (e Q 850°

C 2:34 pm (stard) test. TCI: BF3874 T 1/26/2017 Comments lowed after TCI: BF3874 TCZ = BF3F05

I certify that the above tasks have been performed and that the observations and comments are correct.

Testing Technician

<u>//2//1</u> Date Matthew R Feldman Checked by

8/18/2017 Date

*All photographs/movies will be uniquely identified with test unit, date and time to ensure that the proper sequence can be reconstructed

Report Number: <u>2/1/17 - 1</u>

LEAK TEST REPORT					
Test Requested by: J. CAREISON		Allowable Leak Rate: 🖌 /.	oe-4 Std-Atm-cc/s		
Work Order Number:		Test Pressure Req. Across Boundary:			
Item Tested: 1 ER. TRIANGLE	21-0290	Customer: NS14			
Technique Used: BOMB/BERL SAR	- Inside - Out Outside - In	Procedure/Rev:	70 R.6		
	EQUIE	PMENT			
LEAK DETECTOR		STAND	ARD LEAK		
Make and Model: ADIKEN ASM	340	Manufacturer: VTI	Tracer Gas: He		
Serial Number: HLD 160 1393		Model: VSLT-5-3C-4	e Serial Number: TP860		
		Leak Rate: <u>4.82</u>	Atm-cc/s @ atm @ <u>22.1</u> °C		
TEST GAUGES		Correlation Formula: $[1 - (T_{cal} - T_{surf}) C_T] LR$	Temp Coefficient: 3.0 %/°C		
Temp Gauges: A001952	Due: 6/22/17	Correlated LR: 4.08 E-6	Atm-cc/s @ atm @ 17.0 °C		
Pressure Gauges: MTE 549	Due:	Calibration Due Date:	9/9/16		
	RES	ULTS Quantitative	F Semi - Quantitative		
MACHINE CALIBRATI	ON	SYSTEM TEST CONDITIONS			
System Pressure: 1.0 E-2 mb		System Temperature: 17	°C 🕅 Surface 🦵 Internal Gas		
Background: 1.2 E ⁻⁹	Atm-cc/s	delta P Test Boundary: 🦯	Arm		
Leak Response: 4.2 <i>E</i> ⁻⁶	Atm-cc/s	Tracer Gas: He	% Concentration: CAL		
Minimum Detectable Leak: 1.5 E - 7	Atm-cc/s	System Response Time: 90	\$		
System Sensitivity: 2.0 E-7	Atm-cc/s	System Response: 7-6 e	7 Atm-cc/s		
Response Time: ~5 S		Duration of Test: 90 e	;		
Aux. Equipment:					
REJECT	DATA ATTACHED	System Leak Rate: $\angle /.0 \in -4$	$\operatorname{Atm}\operatorname{cc/s}@\underline{-f}\operatorname{atm}@\underline{17}^{\circ}C$		
COMMENTS: FINE LT					
POST HEAT	TEST				

Test Conducted By: (Print & Sign Name/Level):	Date:	Time:
EVION Zui Strick LTE	2/1/17	1:40
Form Revision: Attachment A, IDMS: #8094, NDE-70, Rev 06 (07/27/2015), (Att. A only-CN-01 08/18/2015)	· · · ·	

Be	OMBING TEST R	EPORT (Suppleme	nť)
Leak Test Report Number: 2/1/17-0	,	Allowable Leak Rate:	L 1.0 E-4
Item(s) Tested:	JE CI-029	0	
TRA	CER GAS BOMB	SING AND LEAK T	EST
Bombing Pressure (psig): 30	Tracer Gas:	He	Bombing Time: 30 M/N
Waiting Time (Sec): 23600 s		Internal Volume (cc):*	1.057 (PRE-HT)
Measured Leak Rate: $7.6 \in -7$	Atm cc/s	Calculated Leak Rate:	∠1.0E⁻⁴Atm cc/s into vac. @ <u>17</u> °C
Test Results: X ACCEPT	REJECT	CALCULATIONS / DA	TA ATTACHED
COMMENTS			

* ESTIMATED 2.2 CL USED FOR CALC

÷

Test Conducted By: (Print & Sign Name/Level): E. VIOAc Juie View LI

Date: 2/1/17

,

Report Number: 2/1/17-2_

		LEAKT	EST REPO	RT - BUBBI	LE TEST			
Test Requeste	d by: S. G.	tarison		Customer:	NGIT			
Work Order N	umber:			Procedure:	NDE 70	26		
Item Tested:	1 EA TRIAN	NGLE CI-	0290	Test Pressure R	Required:	5" Hg		
Technique Use	ed: VAC C	BOX		Liquid Media L	Jsed: IMM	ERSIT UM	200220%	
Test Gas Used	VKC			Liquid Applica	tor Type:	MMERSION		
Inspection Lig	ht Intensity:	>100 FC		Post Cleaning	Method:	n RWSE		
Other Appara	tus Used: F	CASHLIGHT	-					
Direct Pressu	re Technique			Vacuum Press	sure Techniq	ue 📈		
Component Te	est Site 76	506 A		Component In	stallation Site	~		
	, Gau	Iges		Test Pressure Temperature				
Mfg	ID No	Calibration Date	Range	Beginning	End	Beginning	End	
	A002124	8/11/16	0-30"14	15"Hg	15"Hg	17°C	17°C	
Temperature N	 Aeasurina Devid	-p	<u> </u>					
Mfg. OMEZ	A	Model HH8	04	Range K-TYPE		I.D. Number A001952		
RESULTS	ACCEP	T.	REJECT	Р	OST CLENING	PERFORMED:	N DN	
Comments:	POST HS	AT TEST						
Test Conducted By: E.VIOAC	(Print & Sign Name/L	evel):	LIF			Date:	17	

APPENDIX C. WELD INSPECTION REPORT

WELD INSPECTION REPORT							DATE 12/6/2	DATE 12/6/2016					
Tria	ngle Encasem	ent Comp	onents	(SI Units	s Vers	ion)						REPORT	WMBER
syste C1	м I-0288, C1-028	39, C1-029	90					drawi SK-N	NG NUM	ивеr 20160616-01		WORK OR	DER NUMBER
weld W-1	NUMBER				sно RE	DC 7930		INSP. SI FHRD	pec.)-T-N	DE 21 Rev 2			
weld GT88	spec. 8-A (PP), *GT88	8-1 (PP)			WEI GT	D PROCESS		JOINT TYPE	I	FILLET X	SINGLE WELD	ED	DOUBLE WELDED
	1		BASE MA	TERIAL(S)					FIL	LER MATERIA	AL(S)	
TYPE	304/304	LSS	30)4/304L S	5			TYPE		308L			
R NO.	N/A			N/A				IR NO.		N/A			
HEAT NO.	17722	8		843690				HEAT NO.		DACU			
MFG.	Ta Chen Inter	national		ATI				MFG.		Techalloy			
ORM	.500" Pla ASTM A240	nte -2015	0. AST	600" Plate M A240-13	C			SIZE		.045"			
PART	1			2									
IECE	Triangle Encaser	ment Base	Triangle	Encaseme	nt Top								
SIZE	See Drawi	ing	Se	e Drawing									
	REPARATION					CLEANE			-		INERT GAS		
VTUDE						CLEANER	1	COVER			BACKU	JP	
opp	er Fixture			X A	CETON	E X	ALCOHOL	X AR	GON	CFH 25		RGON	CFH glovebox
elder Leff	ew			WELDER						Сн	ELIUM	CFH	
craftsman craftsman lay Kehn		N			FIT UP Accept		work c	work condition Accept					
SP.	STAGE	ROOT PASS	SEC L/	OND	INTERM.		FINAL		PREH	EAT TREATMENT		POSTHE	AT TREATMENT
SUAL		1		/		1	SAT			N/A		N/A	
NETR	ANT	/		/		1	1	BATCH N	10.	SKL-SP1	SK	C-S /	SKD-S2
DIOG	RAPH	1		/		1	/	ULTRASC	DNIC	1			
ACHIN	IE WELDING VARI	ABLES	/OLTS 7-17				AMPS 5-50			L	INTERPASS N/A	TEMP.	
PAIR	5										L.,		

REMARKS

*Weld filler metal used only if necessary.

- <u></u>			
INSPECTOR'S \$IGNATURE	DATE 12/6/2016	FINAL ACCEPTANCE	DATE

APPENDIX D. LEAK TESTER CERTIFICATION

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

NDT Per	sonnel Qualification	and Record of C	Certification		
Name: Eric Vidal	Badge No: 712805		Certification Date	: 10/12/2015	;
Division: IOSD	Job Function: Full Time N	DT Tech	Expiration Date:	10/12/2018	
NDT Method: LT	NDT Level: II		Endorsement(s): BT		
Restrictions: None					
Meets Current Vision Requirements (as of Certification Date): Jul 15, 2015 🗌 Corrected					
	Educational	Background		A PARTY A	
High School / G.E.D.	echnical Degree or More	Last School Attended:			
	NDT Training Satisf	factorily Completed			
Company or Institutio	'n	5	Subject(s)		Hours
ORNL	1	Bubble Test			6
		3			

Company or Institution	Job Description	From (Date)	To (Date)	Method	Level	Hours
ORNL	Full Time NDE	Apr, 13, 2015	Present	LT	П	38

NDT Experience

Examination Results

INITIAL EXAM	Date	No. Questions	Pass / Fail	Administered by
General Knowledge	Oct.12, 2015	40	Р	J. M. Pryor, ASNT Level III
Procedure Specific	Oct. 7, 2015	30	Р	J. M. Pryor, ASNT Level III
Hands-On-Practical	Oct. 7, 2015	20	Р	J. M. Pryor, ASNT Level III
Composite Score:	92]		
REQUALIFICATION EXAM	Date	No. Questions	Pass / Fail	Administered by
	/	-		
I have reviewed the above information and as stated in accordance with ORNL writte Certified By: J. MPryor, ASNT Le Certificate # 126138 ORNL Certifying Aut	d believe it true and acc n practice FHRD-ACP- Date vel III	urate to the best of my ki 11 <i>Qualification / Certij</i> :: Oct. 12, 2015	nowledge. I hereby certi fication Requirements for Authorized By	fy this employee meets the requirements of NDT technician or NDE Examiners and Recommended Practice No. ASNT SNT-TC-1A (: S. D. Mobley ORNL Welding Program Manager

Note: This certification is void on the indicated Expiration Date, upon termination of current employment, or revocation by employer, whichever comes first. Certification examinations and full training records are on file at ORNL building 7003; viewable upon request.

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

	NDT Pers	onnel Qualificat	ion and Re	cord of Cen	rtification			
Name: Eric Vidal		Badge No: 712805		С	ertification Date	: 7/9/20	15	
Division: IOSD		Job Function: Full Tin	ne NDT Tech	Expiration Date: 7/8/2018				
NDT Method: LT		NDT Level: II		E	ndorsement(s):	MS		
Restrictions: None								
Meets Current Vision Requirements	(as of Certificatio	on Date): 7/13/2015		Correct	ed 🔳 Ur	n - Correct	ed	
		Educatio	nal Backgrou	nd				
High School / G.E.D.	🗙 2 Yr. Tech	nnical Degree or More	Last Scho	ol Attended: Pell	lissippi State Teo	chnical Un	niversity	
		NDT Training S	atisfactorily (Completed				
Compa	any or Institution			Subje	ect(s)			Hours
Leak Testing Specialists			Mass Spec				40	
		NDT	Experience					
Company or Instituti	on	Job Description	From (Date)	To (Date)	Method	Leve	:l	Hours
Babcock & Wilcox		Full Time Insp.	May 10, 2010	May 2014	LT MS	II	>700	
JRNL	4	Full Time Insp.	April 13, 2015	Present	LT MS	II	N/A	
	56.14	Examir	nation Results					
INITIAL EXAM	Date	No. Questions	Pass / F	ail	Ac	Iministere	ed by	
General Knowledge								
Procedure Specific								
Hands-On-Practical								
Composite Score:								
BEOLIA IEICATION EVAN				227				
REQUALIFICATION EXAM	7/9/2015	No. Questions	Pass / Fa	ail Laff Prov	Ad	Iministere	ed by	
ave reviewed the above information an stated in accordance with ORND writte	nd believe it true and en practice FHRD-4	d accurate to the best of my ACP-11 Qualification / Cer	knowledge. I here	by certify this emp nents for NDE Exc	bloyee meets the r uniners and Reco	requirement mmended I	ts of NDT te Practice No.	chnician ASNT SNT-7
rtified By:	2	Date: 7/9/2015	Authoriz	ed By:	moll	7	Date: 7/9	0/2015
J. M. Boff, ASNT Le Certificate # 126138 ORNL Certifying Aut	evel III hority			S. D. M ORNL	lobley Welding Program	n-Manager	r	

Note: This certification is void on the indicated Expiration Date, upon termination of current employment, or revocation by employer, whichever comes first. Certification examinations and full training records are on file at ORNL building 7003; viewable upon request.

The American Society for Nondestructive Testing, Inc.

Be it known that

Jeff M Pryor

has met the established and published Requirements for Certification by ASNT as

NDT Level III

in the following Nondestructive Testing Methods:

Method	Issue Date	Expiration Date
Leak Testing	6/15	6/20
Liquid Penetrant Testing	6/15	6/20
Magnetic Particle Testing	6/15	6/20
Radiographic Testing	6/15	6/20
Ultrasonic Testing	6/15	6/20
Visual Testing	6/15	6/20

126138

Certificate Number

ASNT President

Certification Management Council Chair

This certificate is the property of ASNT, is not official without ASNT's raised gold seal and is subject to revocation prior to the listed expiration date. This certificate should be verified on the ASNT website or by contacting the ASNT Technical Services Department.

APPENDIX E. LEAK TESTING PROCEDURE

ORNL Leak test procedure not available for public release. Procedure number is NDE 70, Rev. 6

APPENDIX F. CALIBRATION RECORDS

OAK RIDGE NATIONAL LABORATORY

METROLOGY DEPARTMENT

TEST REPORT

ITEM: 39.38" LENGTH STANDARD

Serial Number: _A001146

CUSTODIAN: M. FELDMAN

	AS FOUND	REQUIREMENT	INSPECTION METHOD
LENGTH	39.4000/39.4099	39.38	СММ

Temperature: 68 ° F

Date 11/03/11

Date Due 11/03/16

Inspector '024294 Reviewed by But Symmer 11/3/11

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY TRACEABILITY ESTABLISHED THROUGH ORNL PRIMARY STANDARDS

Standards used:

ID#

Calibration Due Date

M212632

5/19/14

Certificate of Calibration

ISO 9001:2008 (10101/2)

Everett Service Center

Purchase Order:	COC	RMA:	31143929
City: State:	DOUGLASVILLE	Country:	US
Customer:	MCMASTER-CARR SUPPLY COMPANY		
Procedure:	Fluke 52-II:(1 YEAR) ZCAL VER /5520	Revision:	1.2
Description:	Thermometer		
Serial Number:	36370410WS	Humidity:	35.9 %
Model:	52 II	Temperature:	24.2 °C
Manufacturer:	Fluke	Certificate Date:	07-Nov-2016
Result Summary:	In Tolerance	Calibration Due:	07-Nov-2017
Certificate Number:	291652	Calibration Data	07-Nov-2016

This calibration is traceable to the International System of Units (SI), through National Metrology Institutes (NIST, PTB, NRC, NPL, etc.), ratiometric techniques, or natural physical constants. This certificate applies only to the item identified and shall not be reproduced other than in full, without the specific written approval by Fluke Corporation. Calibration certificates without signature are not valid. The calibration has been completed in accordance with Fluke Electronics Corporation Quality System Document 111.0 Revision 118 8/2014 and/or Fluke 17025 Quality Manual QSD 111.41 Revision 005 9/2014.

The Data Type found in this certificate must be interpreted as:

- · As Found Calibration data collected before the unit is adjusted and / or repaired.
- As Left Calibration data collected after the unit has been adjusted and / or repaired.
- · Found-Left Calibration data collected without any adjustment and / or repair performed.

Fluke Corporation							
1420 75th St SW. Everett WA 98203 USA	1						

Telephone 888.993.5853 425.446.6390

Revision 2.11

FLUKE ®

Certificate Number: 291652

Date of Calibration: 07-Nov-2016

FLUKE.

Standards Used

Asset	Description	Cal-Date	Cal-Due
B1322	Fluke 5520A Calibrator	27-Sep-2016	27-Sep-2017
			·

Fluke Corporation	Telephone	Facsimile	Internet	Revision	2 4 4
1420 75th St SW, Everett WA 98203 USA	888.993.5853	425.446.6390	www.fluke.com	Revision	2.11

Job# 3054371				
Date: 1/24/17				

Technical Support Department Instrument Data Continuation Sheet

Tech: 30220 Std: A001277 M210101 A002021

Furnace	Standard	UUT Reading					
	Type S	BF3874	Error	BF3F05	Error		
21.5	21.5	20.9	-0.6	21.1	-0.4		
750.0	754.1	755.0	0.9	754	-0.1		
800.0	803.5	804.5	1.0	803.6	0.1		
850.0	854.0	855.0	1.0	854.4	0.4		
900.0	904.3	905.4	1.1	905.1	0.8		
950.0	955.4	956.9	1.5	956.3	0.9		

Management Contractor for DOE's Oak Ridge National Laboratory	Calibration Results Oak Ridge National Laboratory ORNL Metrology Laboratory Bethel Valley Rd. Bldg. 5510A Oak Ridge, TN 37831-6366	
Unit Under Test Information Manufacturer: Oak Ridge National Laboratory Description: Type S Thermocouple Dual Junction Model Number: N/A Serial Number: N/A Asset / ID Number: A001277 Custodian: Anthony D Mcbee Work Order Number: 2016002594	Customer Information Anthony D Mcbee Building: 2547 Room: 002 Mail Stop: 6300 865-574-6293	Test Information Certificate Number: 2016002594 Overall Result: Pass Performed on: 1/18/2017 Next Cal Due: 1/18/2018 Performed by: Greg Strickland Environment: 23.4°C 46.8%Rh Received: In Tolerance
Notes: Asset No.		Work Order No.

ORNL Metrology Laboratory (ORNL ML) certifies that the above listed instrument meets or exceeds all specifications as stated in the referenced procedure unless otherwise noted. This Report of Calibration applies only to the item being calibrated, identified above.

This calibration report documents the traceability to national standards, which realize the units of measurement according to the International System of Units (SI). Calibration data and conformity assessment (Pass/Fail decision) is limited to the performance of the instrument at the time of test. The "Next Cal Due" date is based on manufacturer's recommendations or best calibration practices and with customer agreement (in the case of external ORNL customers); the instrument should not be used past this date without recalibration. This report shall not be reproduced, except in full, unless written permission for an approved abstract is obtained from ORNL ML. Any report containing accredited data shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. Calibration reports without authorizing signature(s) are not valid.

For accredited data, measurement uncertainties at the time of test, expressed in base units, are given on the following pages, where applicable. They are calculated in accordance with the methods described in EA-4/02, NIST TN1297, DKD-3, or other applicable documents that comply with the Guide to the Uncertainty in Measurement (GUM), using a coverage factor of k=2, corresponding to a confidence level of approximately 95%. Unless otherwise indicated, any conformity determination in this report is based on a Test Uncertainty Ratio (TUR) of 4:1 or greater. Any TUR less than 4:1 will be identified in the test data. It is the responsibility of the instrument custodian, with the assistance of his/her Quality Representative, to determine whether this level of confidence for the determination of conformance is adequate for the intended use of this instrument.

This calibration was performed using measurement standards traceable to the appropriate standard(s), maintained by the National Institute of Standards and Technology (NIST), to accepted intrinsic standards of measurement, or is derived by ratio type self-calibration techniques. The calibration system used to derive accredited data complies with the requirements of NIST Handbook 150, ANSI/NCSL Z540.1-1999 (R2002), ISO/IEC 17025.

itandards Used								
ID	Description	Service Date	Due Date					
0078611	Isotech MicroK-100 Thermometry Bridge	6/2/2016	6/2/2017					
0078621	Isotech ITL-M-17673 Silver Freeze Point Cell	9/4/2009	9/4/2017					
A001412	Rosemount 162CE SPRT	11/15/2016	2/15/2017					

FOUND_LEFT

Procedure used: Manual Data File Reader, Rev. 1.0

Test Data											
UUT Range /	Standard		Standard	UUT	UU	IT	UUT		Measurement		
Comment	Reading		Modifier	Reading	Tolera	ance	Error	% Tol	Uncertainty	Accred	Test Status
INITIAL INSPECT	TION									•	
No Calibration Seals found on the UUT.											
Instrument was received in good, functional condition.											
Procedure used:	: Manual Data										
UUT Specificati	ion is based on (I	'ype S Spe	ecial Grade +/-	0.6 Deg C or 0.	1 % WIG Plus In	dicator Sk	pecification	of $+/-$ 0.	6 Deg C)		
Standard	UUT	UUT	UUT		Measurement						
Temperature	Temperature	Error	Specificati	lon	Uncertainty	Result					
(Deg C)	(Deg C)	(Deg C)	(Deg C)	% TOL	(Deg C)						
A001277-A											
231.97	231.7	-0.3	1.20	27	3.1E-01	*Pass					
418.97	419.0	0.0	1.20	1	3.1E-01	*Pass					
594.01	593.2	-0.8	1.26	67	1.0E+00	*Pass					
961.78	961.2	-0.5	1.56	35	1.0E+00	*Pass					
A001277-B											
231.99	231.7	-0.3	1.20	25	3.1E-01	*Pass					
419.05	419.1	0.0	1.20	2	3.1E-01	*Pass					
594.01	593.1	-0.9	1.26	73	1.0E+00	*Pass					
961.78	961.3	-0.5	1.56	33	1.0E+00	*Pass					
* Test Uncertai	inty Ratio < 4:1										
~~~~~~~~~~~~		~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								

-- End of measurement results--

Approved By: Greg Strickland 1/18/2017 Technical Manager