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Stochastic fluctuations (or ‘‘noise’’) in the single-cell populations of
molecular species are shaped by the structure and biokinetic rates
of the underlying gene circuit. The structure of the noise is
summarized by its autocorrelation function. In this article, we
introduce the noise regulatory vector as a generalized framework
for making inferences concerning the structure and biokinetic rates
of a gene circuit from its noise autocorrelation function. Although
most previous studies have focused primarily on the magnitude
component of the noise (given by the zero-lag autocorrelation
function), our approach also considers the correlation component,
which encodes additional information concerning the circuit. The-
oretical analyses and simulations of various gene circuits show that
the noise regulatory vector is characteristic of the composition of
the circuit. Although a particular noise regulatory vector does not
map uniquely to a single underlying circuit, it does suggest possible
candidate circuits, while excluding others, thereby demonstrating
the probative value of noise in gene circuit analysis.

gene circuit analysis � noise analysis � stochastic gene expression

The emerging field of noise biology focuses on the sources,
processing, and biological consequences of the inherent

stochastic f luctuations in the populations, concentrations, posi-
tions, or states of molecules that control cellular function and
behavior (1–22). Most of these studies have been directed toward
the question: what are the noise characteristics that emerge from
a particular well defined gene circuit? An intriguing prospect
emerges when the question is turned around: to what extent can
measured noise characteristics provide information regarding
the underlying gene circuit? A few examples of this type of
inference have been published. In two recent flow cytometry
studies of Saccharomyces cerevisiae (2, 14), the observed rela-
tionship between noise and protein expression level was inter-
preted to be consistent with a predominance of intrinsic noise
originating from fluctuations in mRNA levels. Another study
(17) inferred that protein mixing times (the time scale required
for the protein level in a single cell to transition from higher than
the population average to lower than the population average)
exceeding one cell generation could originate from upstream
noise sources or the presence of feedback loops. In this article,
we develop a generalized framework for probing the circuit of a
particular gene via its intrinsic noise.

The noise behavior of a given gene circuit is given by:

3
N � g�m�S, k��, [1]

where
3
N is the noise structure vector (defined below), m is a

model of the system comprised of circuit structure (S; architec-
ture or regulatory arrangements) and circuit rate parameters (k;
e.g., kinetic rates), and g is an analysis or simulation operation
that reveals the noise structure of the model. Eq. 1 states that the
noise structure is uniquely determined by circuit structure and
parameters. Here, we seek to find another function, ĝ, such that
m(S, k) � ĝ(

3
N); that is, we wish to determine the architecture

and kinetic rates from a circuit’s noise structure. In general
terms, our method is based on a comparison of the measured

noise structure of the circuit of interest to the theoretical noise
structure of an assumed model (Fig. 1A). In this article, we
describe the process by which these two signals are processed to
yield the noise regulatory vector that points toward a family of
possible circuits consistent with the measured signal and away
from other possible circuits that are incompatible with the
measured signal (Fig. 1A).

The noise regulatory vector �
3
Nr is defined as:

�
3
Nr �

3
Nm �

3
NA [2]

where
3
Nm is the measured noise structure vector for the circuit

of interest, and
3
NA is the theoretical noise structure vector for the

assumed a priori circuit model m(SA, kA). The assumed structure
SA is based on a priori knowledge of the circuit, which may not
be complete. Through experimental observations �, we can
select parameters kA, such that the model m(SA, kA) maps onto
the observations f(m(SA, kA))f�, where f is a solution of the
model that can be compared with �.

This framework is general, in that it may be adapted to any a
priori circuit structure SA, appropriate experimental observables
�, and defined noise structure vector

3
N. For example, in

practice, one may specify the a priori circuit to include everything
known about a particular gene circuit. In this work, we assume
SA to be a constitutive transcription-translation circuit [Fig. 1b,
supporting information (SI) Text, and Table S1]. This definition
is appropriate in the case where little is known about the
gene-specific regulatory mechanisms on which SA is defined.
Furthermore, it allows kA to be uniquely defined from �
consisting of only abundance and stability of mRNA and protein
molecules (see Methods).

The complete noise structure of a molecular population or
concentration [M(t)] is contained in the autocorrelation function
[ACF, �(�)], which is defined as

���� � E��M�t� � ��t�	��M�t � �� � �M�t�	�
, [3]

where �M(t)	 is the average value of M(t), and E� returns the
expected value of the term within the bracket. In an ideal
case, �

3
N would be the difference between measured and a priori

ACFs, but in practice, there are experimental constraints that
limit the accuracy of measured ACFs. The accuracy of the ACF,
particularly at larger values of �, is compromised by the limited
number of cells tracked and the limited duration of observation
in time-lapse fluorescence microscopy (1, 22). Here, we will
consider a noise structure

3
N represented by two components: (i)
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noise magnitude, which is a measure of the size of fluctuations;
and (ii) noise correlation (or frequency content), which is an
indication of the dynamic responsiveness of the protein level to
changes in the environmental or physiological state of the cell.
The relationship between �(�) and the components of

3
N is

shown in Fig. 1C. The noise magnitude is quantified by �(0),
which is the noise variance �2 and is often normalized by the
square of the mean to give CV 2 � �(0)/�M(t)	2, where CV is
known as the coefficient of variation. We quantify correlation
using the half correlation time (�1/2), which is defined by
�(�1/2) � �(0)/2; that is, �1/2 defines the time for correlation to
fall to 1⁄2 of its original value. With these two components, we
choose to define the noise structure and regulatory vectors in this
work as (see SI Text):

3
N � log CV2m̂ � log �1/2ĉ

�
3
Nr � � log CV2m̂ � � log�1/2ĉ ,

� log�CVm
2 /CVA

2 �m̂ � log��1/2,m/�1/2,A� ĉ , [4]

where m̂ and ĉ are log-scale unit vectors on the magnitude and
correlation axes, respectively, and subscripts m and A denote
measured and assumed quantities, respectively. The noise vec-
tors are defined in log-space to capture the natural scaling of
noise in biological systems. To interpret �

3
Nr, we compare it to

a catalog of theoretical regulatory vectors �
3
NrT � g(m(S, k)) for

models over a wide range of S and k, to suggest one or more a
posteriori models m(SP, kP) to better capture the true nature of
the gene circuit. In this way, the noise regulatory vector ‘‘points’’
toward a family of possible a posteriori models that includes the
true gene circuit and away from inappropriate models. In the
remainder of this article, we illustrate the probative value of
noise in gene circuit analysis by expanding on the conceptual
rationale for the above framework and developing the theoret-
ical noise regulatory vectors for several common regulatory
motifs.

Results
A priori Noise Vectors. We now present an expanded development
of the noise regulatory vector, beginning with the definition of
the noise vector

3
NA for the a priori model m(SA,kA). We illustrate

the definition of m(SA,kA) by assuming a simple transcription-
translation circuit (SA) and using it to interpret experimental
observables (�) consisting of a compilation of several genome-
scale databases characterizing the abundance and stability of
mRNA and proteins in S. cerevisiae (see Methods). Our model of
the intrinsic noise of protein synthesis is based on a system of
first-order reactions (Fig. 1B; details provided in SI Text and
Table S1). We further assume that gene activation kinetics are
fast (kf � kr �� �0,�m,�p), and that �1 � 0. Under these
assumptions, the remaining parameters kA may be obtained
directly from � (see Methods).

We define noise vectors in the context of a 3D plot of the two
noise component axes CV2 and �1/2 and a mean protein axis �p	,
which we term the 3D noise map. Two orthogonal planes of the
3D noise map for S. cerevisiae are shown in Fig. 2A, which should
be considered an illustrative example due to limitations in the
compiled database (see Methods). Each point in the noise map
in Fig. 2A represents the noise characteristics of a particular
protein. However, through the action of the regulatory mecha-
nism, the expression level of the gene is likely to change in
response to physiological or environmental conditions. The
manner in which the noise characteristics change with changing
expression level of the gene contains information about the
underlying regulatory motif. Bar Even et al. (2) and Newman et
al. (14) interpreted the CV 2 
 1/�p	 scaling observed in their
studies, present in our database-derived noise map (Fig. 2A), to
be consistent with a predominance of intrinsic noise originating
from fluctuations in mRNA levels and a relatively low contri-
bution of extrinsic noise at low and moderate values of �p	.
However, the ability to infer regulatory mechanisms from noise
characteristics may be enabled by consideration of the �1/2
component of the noise, which has been ignored in most gene
noise investigations to date. For example, analysis of Eqs. 4 and
8 indicates that modulation of �p	 via changes in protein stability
also yields the observed CV 2 
 1/�p	 relationship, under con-
ditions where protein stability is much greater than mRNA
stability (�m �� �p). It is impossible to distinguish between the
two mechanisms of protein modulation based on the CV2 vs. �p	
view alone. However, as we show below, the two mechanisms can
easily be distinguished when both the CV2 and �1/2 components
of noise are considered together, because the latter component
is affected by changes in protein stability but not by changes in
transcription rate. In fact, the distribution of �1/2 values observed
in Fig. 2B suggests that variability in protein stability may have
contributed to the observed pattern of CV 2 
 1/�p	 scaling.

We incorporate the CV 2 
 1/�p	 scaling in our a priori model
by stipulating that modulation of �p	 is achieved through varia-
tion of the effective transcription rate. With these assumptions,
the noise vector of the a priori model is given by:

3
NA � �c1 � log��p	�
m̂ � c2ĉ , [5]

A

B

C

Fig. 1. Noise regulatory vector and its application in the analysis of gene
circuits. (A) The noise regulatory vector for an uncharacterized gene circuit is
determined by comparison of its experimental noise structure to the noise
structure of an assumed model. The vector points toward a family of gene
circuits that includes the true gene circuit, and away from inappropriate
models. (B) The assumed structure of the a priori model is a constitutive
transcription-translation circuit. (C) Time series and autocorrelation functions
for two stochastic protein populations characterized by identical �p	 and CV2

but different half correlation times �1/2.
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where c1 and c2 are protein-specific constants (see Eq. 7 in SI
Text), which are functions of � measured under standard
(defined) physiological and environmental conditions. Experi-
mental techniques for measuring the mRNA and protein abun-
dances and half-lives are reviewed in the SI Text. The line defined
by the locus of all3NA over all values of �p	 is termed the bias line
(see Fig. 2B). In the case of our a priori model, the bias line
represents the hypothetical intrinsic noise characteristics of the
gene under the assumption that its activity is regulated by rapid,
noise-free modulation of the effective transcription rate. The
bias line is hypothetical, because the actual regulatory mecha-
nism of the gene may be quite different from the a priori model.
The bias line is a reference state from which we quantify
deviations in noise characteristics attributable to alternative
regulatory mechanisms, such as modulation of translation rate,
modification of protein, or mRNA stability, slow or noisy modu-
lation of transcription, or positive or negative feedback.

Graphically, the noise regulatory vector �
3Nr is defined as the

vector in the log(CV2) vs. log(�1/2) plane (i.e., �
3Nr as defined here

is 2D), which quantifies the deviation of the measured noise
characteristics from the bias line at the measured value of �p	
(Fig. 2B, see SI Text Eq. 8 for analytical description). Measure-
ments of �p	, CV2, and �1/2 are made using time-lapse microscopy
(1, 5, 15, 22, 23). These measurements need not be made under
the same experimental conditions used to define the bias line,
because the goal is to make inferences of the underlying regu-
latory mechanism as it responds to changes in physiological and
environmental conditions. We now develop theoretical noise
regulatory vectors �

3NrT for several common regulatory
mechanisms.

Fast Operator Kinetics. We first analyze the simple transcription-
translation model shown in Fig. 1B for the case where the

operator kinetics are fast. This model is identical to the a priori
model, except we relax the assumption that changes in �p	 are
modulated only by variation of km,eff and consider also changes
in kp, �m, and �p. We first consider the case in which mRNA is
more stable than proteins (�m/�p �� 1) and high translational
efficiency (b �� 1), which is applicable to many prokaryotic and
some eukaryotic proteins. Under these conditions, changes in kp
and �m can be considered in the context of the resulting change
in b. The magnitudes of the components of �

3NrT for changes in
these parameters (Table 1) are derived via analysis of Eqs. 4 and
8 (see Methods and SI Text). In general, modulation of � p	 by
changing translation efficiency affects the noise magnitude,
whereas modulation of � p	 by changing protein stability affects
the dynamic responsiveness, compared with modulation of � p	
by changes in transcription rate. These patterns are reflected in
�
3Nr and allow the inference of possible mechanisms of protein

modulation and the magnitude of the parameter changes. These
inferences allow certain regulatory mechanisms to be excluded
and allow additional characterization to be focused on the most
likely candidate models. The effects of simultaneous variation of
more than one parameter can be predicted by simple addition of
the independent vector components.

For many of the proteins in our combined yeast database, the
time scale of mRNA decay is of the same order as the cell-
doubling time, in which case �m/�p could approach unity. Nu-
merical analysis of Eqs. 4 and 8 revealed that relaxing the
assumption �m/�p �� 1 necessitates small corrections to the ideal
vectors (Table 1, see SI Text and Fig. S1).

Slow Operator Kinetics. When the time scale of operator transi-
tions approaches or exceeds the time scale of transcription and
decay processes, operator dynamics add significant noise to the
system (3, 11, 19). Long time scales in operator transitions can
originate from many different underlying biological mecha-
nisms, such as cell-cycle-dependent gene expression, low fre-
quency noise in activators and repressors, or chromatin remod-
eling. These systems must be analyzed with care (see SI Text and
Figs. S2 and S3).

Noise map coordinates for systems characterized by slow
operator dynamics are calculated analytically under the assump-
tion �m/�p �� 1 (see Eq. 5, SI Text). As expected, all of the noise
vectors reside in the upper-right quadrant of the
�log(CV2)��log(�1/2) plane (Fig. 3), because slow operator
dynamics adds noise and slows the dynamics of the system. The
mean gene activity level G(t) is determined by kr/(kr � kf).
Deviations from bias-line behavior are largest at moderate levels
of gene activity and disappear as G(t) approaches 0 and 1,
consistent with earlier work (3, 19). We now define two ratios
that characterize the DNA-binding kinetics: �1 � kr/�p and �2 �
(kr/�0). In general, �1 has a larger effect on the direction of the
vectors, whereas �2 has a larger effect on the overall magnitude
of the vectors. At �1 �� 1, only the �log(CV 2) component of the
noise vector is significant, because 1/�p is the dominant time scale

A

B

Fig. 2. Relationship of 3D noise map and noise regulatory vectors, �
3
Nr. (A)

Noise map for 2,920 ORFs in S. cerevisiae. A subset of 25 proteins that were
both included in the Bar-Even et al. (2) study and present in our compiled
database (shown in red) are observed to scatter about the Bar-Even (2) noise
model CV2 � 1,200/�(p	 (red line), suggesting a similarity in measured noise
trends [Bar-Even (2)] and those inferred from literature data (blue points). (B)
Graphical definition of the bias line and �

3
Nr. The bias line represents the

behavior of the a priori model. To determine
3
N�r for a protein with

measured coordinates on the noise map (filled circle), one first locates the
bias point (open circle) by projecting vertically to the bias line. �

3
Nr is

defined by the 2D vector connecting the bias point to the measured point
in the log(CV2)�log(�1/2) plane.

Table 1. Components of �
3
NrT for transcription-translation model

with fast regulatory kinetics and b >> 1

�p	 modulated by �log CV2 �log �1/2

�km,eff 0 0
�b (�m/�p ��1) �log(b) 0
��p (�m/�p ��1) 0 ��log(�p)
�b (�m/�p approaches 1) �log(b) �	m,�b 	c,�b

��p (�m/�p approaches 1) �	m,�� ��log(�p) � 	c,��

	i,�j is a small correction to vector component i (m � magnitude, c �
correlation) that has the same sign as the change in parameter j. 	i,�j

increases with decreasing �m/�p.
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under both bias-line and experimental conditions. However, as
�1 decreases below 1, the operator dynamics control the time
scale of protein fluctuations, and the �log(CV2) component
becomes increasingly significant. The overall magnitude of the
deviation is negligible for �2 
 1 and increases as �2 decreases
below 1. This can be most easily understood by realizing that
small values of �2 are associated with small values of b (�2 �
�1�p/�0 � �1b/�p	0, where �p	0 is the mean protein level in the
absence of regulation � �0b/�p), which in turn results in a
decrease in CVA

2 relative to large �2 and hence an increase in
�log(CV2). In other words, systems with large b are inherently
noisy; therefore, the additional noise attributable to slow oper-
ator dynamics is smaller relative to the bias line circuit. The
distortion of the bottom of some of the curves in Fig. 3 is an
artifact related to the operational definition of �1/2 (see SI Text
and Fig. S3).

Autoregulation. So far, we have demonstrated that parameter
deviations from the a priori model m(SA, kA) are quantitatively
captured in �

3Nr. We now use stochastic simulation (6, 12) of
negatively and positively regulated gene circuits (see models in
SI Text and Table S1) to quantify how these specific deviations
of model structure S relative to the a priori model are reflected
in �
3Nr. Negative autoregulation is a mechanism of maintaining

homeostatic protein levels that is reported to decrease both CV2

(20, 24) and �1/2 (1, 18).
The noise behavior of negatively autoregulated gene circuits

strongly depends on the speed of the operator kinetics, which we
found to be conveniently characterized by kinetic ratios analo-
gous to those defined in the previous section (�1 � kar/�p and
�2 � kar/�0, , where kar is the rate constant for dissociation of the
autoregulator–DNA complex). Specification of �1 and �2 also
fixes the ratio b/�p	0 and results in noise vectors that are
independent of �p	0. Classical negative autoregulation behavior
(a decrease in both CV2 and �1/2) occurs as both �1 and �2
approach unity, in which case the operator dynamics may be
considered to be fast (Fig. 4A). For a given value of G(t), the
regulation vectors are observed to rotate clockwise and grow
larger in magnitude with decreasing �1 and �2 as the DNA-
binding kinetics become slower (Fig. 4A). For the case of �1 

1, the predominant effect of decreasing �2 below a value of one
is to increase �log(CV2) (Fig. 4A). However, for �1 � 1, a
decrease in �2 causes both �log(CV2) and �log(�1/2) to increase,
effectively increasing the magnitude of the vector (Fig. 4A).
Therefore, when �1 and �2 are both �1, the former can be
considered to primarily change the direction of the noise vector,

whereas the latter primarily controls its magnitude, as was the
case for the nonautoregulated vectors considered in the previous
section. Overall, negative autoregulation may result in either an
increase or a decrease in CV2 and �1/2, depending on whether the
repression kinetics are fast or slow. This likely explains a few
reports in the literature in which negative autoregulation appears
to either have little effect on noise or even increases it (e.g.,
ref. 9).

Because the role of negative autoregulation is thought to be to

Fig. 3. Noise regulatory vectors for the gene circuit in Fig. 1B as affected by slow
operatorkinetics.Points indicate�

3
NrT forG(t)valuesof (startingfromandmoving

in the direction of the red arrow) 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 (red), 0.6, 0.7. 0.8,
0.9, 0.95, and 0.99. The effect of operator kinetics is captured in the ratios �1 �
kr/�p and �2 � kr/�0.

A

B

Fig. 4. Noise regulatory vectors for autoregulation. Points indicate �
3
NrT at

gene activation levels of (starting from and moving in the direction of the red
arrow) 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. 0.8, 0.9, and 0.95. (A) Negative
autoregulation. The effect of decreasing �2 is to increase �log(�1/2) when �1 1
and to increase both �log(CV2) and �log(�1/2) when �1 � 1. (B) Positive
autoregulation. The effect of multimerization and regimes of mono- and
bistability.

Fig. 5. Summary of noise vector domains for various regulatory motifs. (�ar,
negative autoregulation; �ar, positive autoregulation; sk, slow gene activa-
tion kinetics). Bold font denotes domains of primary influence.
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reduce the magnitude and correlation components of noise (1,
18, 20, 24), we sought to identify conditions in which these effects
were enhanced. First, we recognized that lower values of b
correspond to stronger effects of negative autoregulation at high
levels of repression (see SI Text and Fig. S4). At high repression,
transcription events are relatively rare; however, when b is high,
a large number of proteins are translated from each transcription
event. These proteins persist until they are removed by decay or
dilution. The feedback system is no longer able to tightly regulate
the protein level around �p	, rather the instantaneous value of
protein level varies widely from near zero to around b, with small
values of �p	 being achieved by shutting down transcription for
long periods of time. The noise dynamics of the system then
becomes controlled by protein decay/dilution rather than by
feedback in strongly repressed systems with high b.

We also considered the case in which the autorepressor must
first form a multimer before binding to the operator and the case
of cooperative binding of multiple monomers to operator sites.
Repression by multimers and cooperative binding were shown to
have similar effects when the kinetics of complex formation were
sufficiently rapid (SI Text and Fig. S5). Compared with regula-
tion with the monomer, regulation by a dimer results in a small
additional decrease in �log(CV2) and �log(�1/2) when the oper-
ator kinetics are fast (Fig. S4).

A positively autoregulated gene circuit is characterized by a
low basal state and a high induced state. The system is sche-
matically identical to the negative autoregulation case except
now G and G� are the basal (transcription rate �0) and induced
(transcription rate �1) states of the gene, respectively. Depend-
ing on the parameter regime, the circuit may be monostable only
in the high or the low state, or it may possess bistability in which
both the high and low states are stable (10, 16, 25). Noise
regulatory vectors for a wide range of parameters were gener-
ated by using stochastic simulation. Both the CV2 and �1/2
components of �

3NrT are positive over the entire parameter
space, consistent with previously known characteristics of the
system (16, 25). Unlike negative autoregulation, the noise reg-
ulatory vectors for positive autoregulation are strongly affected
by multimerization (Fig. 4B). In the absence of other nonlin-
earities (e.g., population-dependent protein degradation), de-
terministic analysis predicts that autoregulation by a monomer
is always monostable (25), whereas higher multimers can intro-
duce bistability. Points characterized by bistability (as deter-
mined by histograms of the simulation results) are shown as open
symbols. It is noteworthy that, in a stochastic context, autoreg-
ulation by the monomer was able to generate bistability. Sto-
chastic bistability occurs when the positive-feedback effect is
strong enough to sustain an induced state, but stochastically it is
possible for the protein concentration to decay to zero. Never-
theless, the deterministically bistable dimer system is characterized
by bistability over a much greater range of average induction levels
G� (Fig. 4B). The sensitivity of �

3NrT to other parameter values in
positively regulated gene circuits is provided in SI Text and Fig. S6.

Discussion
The noise regulatory vector �

3
Nr is a framework for interpreting

measurements of gene noise to determine the fidelity of an assumed
gene circuit model. Unlike conventional goodness-of-fit tests, �

3Nr
can suggest necessary modifications of the parameter values k
and/or structure S of the assumed model to better represent the
noise behavior of the circuit. These suggestions arise from
comparison of experimentally measured �

3Nr to a catalog of
theoretical noise regulatory vectors �

3NrT � g(m(S, k)) repre-
senting many different models. The ‘‘first edition’’ of such a
catalog is given in Fig. 5, which summarizes the mapping of �

3NrT
for the regulatory motifs considered in this work to various
spatial domains in the log(�1/2)�log (CV2) plane. Additional
motifs can be added as they are developed. Interestingly, there

are some domains in which multiple motifs are operative,
whereas others cannot be reached by any one of the motifs
analyzed here, acting alone. Although the domains are not
unique to a single regulatory motif, it allows additional exper-
imental characterization to focus on the most likely candidates.
Although the direction of �

3
Nr points to one or more motifs, its

magnitude provides information that constrains the range of
viable biokinetic parameters.

The noise vectors may be particularly useful when they are
measured over a wide range of experimental conditions to assess
specific contexts in which different regulatory motifs may be
operative. In this case, the workflow in Fig. 1 may be used in an
iterative manner in which the a posteriori gene circuit of one
iteration becomes the a priori circuit for the next.

Noise regulatory vectors could be easily applied to a number
of experimental studies in the recent literature. For example,
recent studies have sought to build predictable gene circuits with
complex feedback (7) or combinatorial promoters with multiple
repressor-binding sites (13) based on understanding obtained by
studying their simpler subcomponents. In this case, the a priori
model would be based on the characterized components. A noise
regulatory vector close to zero would result if the composed
system performed as predicted. This is a particularly stringent
test because the noise regulatory vector depends on both CV2

and �1/2. Deviations would result in noise vectors that, when
compared with an appropriately constructed catalog of theoret-
ical noise vectors, would point toward modifications of the model
needed to capture system behavior.

In this work, we have considered noise vectors with CV2 and
�1/2 components. One interesting extension of the method is the
use of higher-dimensional noise vectors. Additional dimensions
may be able to better capture nuances in the shape of the
autocorrelation function that correlate strongly to particular
regulatory motifs. It may also be possible to include cross-
correlation components to the noise vector that indicate regu-
latory relationships between two genes within the same circuit.

One final interesting observation concerns the relative mag-
nitude of b in eukaryotes (b up to 1,000 or more; ref. 2). and our
compiled database) vs. prokaryotes [typically �100 (20)]. The
noise effects (relative to the bias circuit) of slow operator kinetics
and positive and negative autoregulation were shown to be
amplified when b is small. It appears that negative autoregula-
tion, a common regulatory that is beneficial in reducing the
effects of noise, has coevolved with relatively small values of b
in prokaryotes. Conversely, regulatory processes that increase
noise such as chromatin remodeling, cell-cycle-dependent gene
regulation, and positive autoregulation seem to have coevolved
with more efficient translation systems (high b) in eukaryotes. In
the latter case, the evolution of noise-tolerant cell function would
perhaps accommodate both noisy regulatory processes and noisy
constitutive gene expression associated with efficient translation.

Methods
Construction of 3D Noise Map. As an illustrative example, we used our assumed
transcription-translation circuit (SA) to interpret experimental observables (�)
consisting of a compilation of several genome-scale databases characterizing
the abundance and stability of mRNA and proteins in S. cerevisiae. We
combined separate databases for mRNA abundance �m	 (26), mRNA half-life
(t1/2,m) (27), protein abundances �p	 (28), and protein half-life (t1/2,p) (29) by
matching data across ORFs. Because the measurements in the compiled da-
tabase were made by different researchers at different times under different
experimental conditions, caution should be used in their use. Our model of the
intrinsic noise of protein synthesis is based on a system of first-order reactions
(Fig. 1B; details provided in SI Text and Table S1). As part of our definition of
m(SA,kA), we assume that gene activation kinetics are fast (kf � kr �� �0,�m,�p),
and that �1 � 0. Under these conditions, the steady-state mean protein level
�p	 is given by:
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�p	 � km,eff b/�p

km,eff � �0 � kf ��1 � �0�/�kf � kr�, [6]

where km,eff is the effective transcription rate, and b � kp/�m is the average
number of proteins synthesized per transcript. Values of CV2 ( � �P(0)/�p	2)
and �1/2 (�P(�1/2) � �P(0)/2) were calculated from the autocorrelation func-
tion of protein level [�p(�); see Eq. 8] for each of the 2,920 ORFs in the
combined database (Dataset S1).

Relationship of Parameters kA to Observables �. The values of model param-
eters kA are assumed to be related to � according to:

�m � ln�2� / t1/2,m � ln�2� / tdouble

�p � ln�2� / t1/2,p � ln�2� / tdouble [7]

km,eff � �0�1 � G��t�� � �m	�m

b � �p	�p/km,eff,

under the assumptions �1 � 0 and tdouble � 90 min in yeast.

Calculation of Autocorrelation Functions. Under conditions in which gene
activation kinetics are fast (kf � kr �� �0,�m,�p), and extrinsic noise is negligible

(2), the protein autocorrelation function �p(�) for model structure SA (shown
in Fig. 1B and SI Text and Table S1) is given by:

�P��� � �p	��1 �
b

1 � ��p/�m�2�exp� � �p��

� � b��m/�p�

1 � ��m/�p�
2� exp���m��� . [8]

The analytical expression for �p(�) in the case where gene activation kinetics
are slow, from which Eq. 8 is derived, is given by Eq. 5 in SI Text.

Stochastic Simulation and Construction of Noise Maps. Exact stochastic simu-
lations of negative and positive autoregulation models were performed by
using the Sorting Direct Method (12), an optimized version of Gillespie’s
original Stochastic Simulation Algorithm (6). Values of CV2 and �1/2 were
determined from the autocorrelation function, which was calculated by Eq. 3.
Parameter values were swept to generate 3D noise maps. Noise regulatory
vectors were constructed by cubic spline interpolation of the 3D maps, after
smoothing with a running average function (n � 5).
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