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The total amount of uranium dissolved in seawater at a
uniform concentration of 3 mg U/m3 in the world’s oceans is
4.5 billion tons. An adsorption method using polymeric ad-
sorbents capable of specifically recovering uranium from
seawater is reported to be economically feasible. A uranium-
specific nonwoven fabric was used as the adsorbent packed in
an adsorption cage 16 m2 in cross-sectional area and 16 cm in
height. We submerged three adsorption cages in the Pacific
Ocean at a depth of 20 m at 7 km offshore of Japan. The three
adsorption cages consisted of stacks of 52 000 sheets of the
uranium-specific non-woven fabric with a total mass of 350 kg.
The total amount of uranium recovered by the nonwoven fab-
ric was.1 kg in terms of yellow cake during a total submer-
sion time of 240 days in the ocean.

I. BACKGROUND

Uranium is dissolved in seawater at a uniform concentra-
tion of 3 mg U0m3 in the world’s oceans: The molar concen-
tration of uranium of 1.431028 M in seawater is three parts of
one billion of that of chloride. The total amount of uranium in
seawater is 4.5 billion tons, which is much larger than that of
uranium in terrestrial ores. A predominant species of uranium
in seawater is determined to be uranyl tricarbonate ion,1,2

UO2~CO3!3
42. Uranium is essential for managing existing

atomic power plants. For example, Japan has consumed;10000
tons of uranium per year as fuel for atomic power plants.

The adsorption method using solid materials was deter-
mined to be more feasible and environmentally friendly than

other methods such as solvent extraction, floatation, and pre-
cipitation. Davies et al.3 in 1964 suggested the recovery of
uranium from seawater using an adsorption column charged
with hydrous titanium oxide. Seawater was forced to flow up-
ward through the adsorption column using a pump. Sparingly
soluble metal oxides were screened in terms of adsorption rate,
and from these, hydrous titanium oxide was determined to be a
promising adsorbent specific for uranium in seawater.4

A polymeric adsorbent capable of recovering uranium from
seawater was prepared in the early 1980s by Egawa and Harada5

and Astheimer et al.6 The preparation scheme termed amidox-
imation was relatively simple: a cyano group~2CN! of the
polymers, such as acrylonitrile-divinylbenzene copolymer, was
allowed to react with hydroxylamine~NH2OH! to form an
amidoxime group~2C5N~OH!NH2! as a chelate-forming
group with the uranyl ion~UO2

21! in seawater.7 A commer-
cially available acrylonitrile fiber was readily converted into
the amidoxime fiber capable of recovering uranium from sea-
water by amidoximation. The National Institute of Advanced
Industrial Science and Technology~Shikoku! has been exten-
sively developing an amidoxime-fiber bundle, which is packed
in the adsorption bed.8

The possible uranium recovery system is composed of a
combination of the adsorbent, i.e., bead or fiber, and the driv-
ing force for transporting the seawater, i.e., pump or current
flow. To study the fundamental adsorption characteristics of
uranium in seawater, seawater was forced to flow through the
adsorbent-packed bed by controlling both the flow rate and
temperature of seawater at prescribed values.9,10 From a fea-
sibility study, the recovery system using the ocean current and
wave is reported to be advantageous over that using a pump.11,12

II. PREPARATION OF FABRIC ADSORBENT

A nonwoven fabric is used as a packing material for
an adsorption cage submerged in the ocean. Acrylonitrile*E-mail: tamada@taka.jaeri.go.jp
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Fig. 1. The preparation scheme of polymeric adsorbent in nonwoven fabric form containing an amidoxime group capable of forming a complex
with uranyl tricarbonate ion as predominant species of uranium dissolved in seawater. A sheet of the nonwoven fabric made of polyethylene0
polypropylene was irradiated with an electron beam to produce radicals. A cyano-group-containing vinyl monomer, acrylonitrile, was
grafted with a hydrophilic monomer onto the irradiated nonwoven fabric. Subsequently, the cyano group of the grafted polymer chain
was converted into an amidoxime group by reacting with hydroxylamine.

Fig. 2. Stacks of uranium-specific nonwoven fabric in adsorption cages. One hundred twenty sheets of the uranium-specific nonwoven fabric of
29-cm length, 16-cm width, and 0.2-mm thickness were assembled in parallel to the spacer nets to form a stack. One hundred forty-four
stacks were packed in one adsorption cage.
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~CH25CHCN! was grafted onto the nonwoven fabric made
of polyethylene0polypropylene by radiation-induced graft poly-
merization,13 and subsequently, the produced cyano group of
the grafted polymer chain was converted into the amidoxime
group.14 Cograft polymerization of hydrophilic monomer or
methacrylic acid~CH25CCH3COOH! with acrylonitrile onto
the nonwoven fabric was effective in improving the adsorption
rate of uranium onto the resulting amidoxime adsorbent in
seawater~Fig. 1!. Acrylonitrile has a precursor group or a
cyano group of the amidoxime group that specifically captures
uranyl species, whereas methacrylic acid enhances micropore
formation for uranyl species diffusion into the adsorbent; there-
fore, a balance between the amidoxime group and the hydro-
philic group in producing the amidoxime adsorbents was
required to yield a maximum adsorption rate of uranium.15,16

III. URANIUM ADSORPTION IN SUBMERSION SYSTEM

We submerged adsorption cages for uranium recovery in
the Pacific Ocean at 7 km offshore from Sekine-Hama in Ao-
mori Prefecture, Japan~1418 18.0'E, 418 24.4'N!. The sea depth
at the submersion site was;40 m. The adsorption cage, 16 m2

in cross-sectional area and 16 cm in height, consisted of 144
stacks of the amidoxime adsorbent in the form of nonwoven
fabric. Each stack consisted of 120 sheets of the nonwoven

fabric of 29-cm length, 16-cm width, and 0.2-mm thickness,
with 59 sheets of spacer nets~Fig. 2!. The stacks were regu-
larly packed into the adsorption cages in the direction parallel
to the perpendicular axis of the adsorption cages. Three ad-
sorption cages, connected in series with four ropes, were sub-
merged in seawater with a span of 1.5 m by a floating frame
that was stabilized by four buoys suspended by four 40-ton
anchors placed on the seafloor~Fig. 3!. The total mass of the
nonwoven fabric packed into the three adsorption cages was
350 kg in the dry state. The frame was designed to endure the
following ocean conditions: wind strength, 30 m0s; tidal cur-
rent, 1.03 m0s; and wave height, 10 m.

Seawater rapidly invades sheets of the spacer nets upward
and downward induced by the wave motion and slowly pen-
etrates sheets of the nonwoven fabric. In addition, the tidal
motion stirs seawater horizontally between the adsorption cages.
Uranium species in the bulk of seawater are transported to the
amidoxime group of the polymer chain grafted onto the non-
woven fabric via both convective and diffusional mass-
transfer processes.

The uranium recovery experiment was performed from
autumn of 1999 to autumn of 2001. The adsorption cages were
pulled out from the seawater by using a crane ship every 20 to
40 days. Thirteen to sixteen stacks were taken out of the ad-
sorption cage to elute uranium adsorbed onto the nonwoven
fabric with 0.5 M hydrochloric acid. The stacks were returned
to the adsorption cages after elution and used for subsequent

Fig. 3. A submerged system of adsorption cages for uranium recovery from seawater. A 64-m2 floating frame made of stainless steel was
stabilized by the mooring cables and buoys suspended by four anchors placed onto the seafloor. The frame hung three adsorption cages,
which were connected in series with four ropes. The top cage was submerged at a depth of 20 m, and the span between cages was 1.5 m.
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submersion. The amount of uranium recovered by the total
number of stacks in the adsorption cage was evaluated by lin-
ear multiplication of that eluted from the sampled stacks of the
nonwoven fabric.

The amount of uranium adsorbed onto the amidoxime ad-
sorbent during each submersion period and the apparent ad-
sorption rate defined by dividing the amount of adsorbed
uranium by the submersion period and stack number are sum-
marized in Table I, as well as the seawater temperature. The
variation of the apparent adsorption rate will be due to sea-
water temperature, the wave and tidal motions of the adsorp-
tion cages in seawater, and the elution history of the amidoxime
adsorbent.

Throughout the uranium recovery experiment, the total
amount of uranium recovered by the 350-kg nonwoven fabric
was.1 kg in terms of yellow cake during a total submersion
time of 240 days in the ocean; uranium ores with;0.3% ura-
nium were aquacultured in the Pacific Ocean.

Biofouling was observed on the surface of the stacks.
Biofouling includes adhesion and subsequent growth of ma-
rine microorganisms and algae; however, most of these marine
microorganisms were removed by immersing the stacks in fresh
water after the stacks were taken out from the adsorption cage.
The drastic decrease in ionic strength induced the detachment
of these marine microorganisms from the surface of the stacks.

Projects on uranium recovery from seawater have been
carried out for two decades in Japan from a laboratory scale to
an offshore plant scale; extensive development of high-
performance adsorbents and feasibility studies of the recovery
system led to the development of an ocean-current0wave-
utilizing system using the submerged adsorption cage charged
with stacks of the nonwoven fabric capable of specifically
recovering uranium.
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~8C!
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~g!

Apparent
Adsorbent Rate
@g0~day{stack!#
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