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' Outline

e What is a virtual (neutron) experiment?
e What can it be used for?

© EXAMPLE 1: PEAK BROADENING IN LSCO+0O
® EXAMPLE 2: PHASESHIFT BY REFRACTING PRISM IN SESANS
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" What is a virtual (neutron) experiment?

What is a virtual (neutron) experiment?

e The neutrons rays must have absolute intensity units and should
be traced through the whole instrument, from source to detector.

e The description of the instrument should be as close as possible
to the reality. This is in particular the case for the sample.

e The virtual instrument is controlled like the real instrument, and
the resulting data are analyzed like real data.

More in Lefmann et al JNR 16(3-4), 97-111 (2008)
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What can virtual experiment be used for?

¢ Instrument upgrade and design
[ )
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“ What can virtual experiment be used for?

¢ Instrument upgrade and design
e Teaching and learning NS
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“ What can virtual experiment be used for?

¢ Instrument upgrade and design
e Teaching and learning NS

Ipstrumentetion Cptimizetion
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Drate producticn Drata reduction / enalyzis
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" What can virtual experiment be used for?

Instrument upgrade and design

Teaching and learning NS
NMI3 E-LEARNING PORTAL COMING SOON!
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" What can virtual experiment be used for?

¢ Instrument upgrade and design

e Teaching and learning NS

e Separation of scattering contributions from sample and sample
environment. Example TOF on liquid Ge
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Instrument upgrade and design

Teaching and learning NS

Separation of scattering contributions from sample and sample
environment.

Analysis of real experimental data
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" What can virtual experiment be used for?

Instrument upgrade and design

Teaching and learning NS

Separation of scattering contributions from sample and sample
environment.

Analysis of real experimental data
Two examples (rest of the talk):
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“ What can virtual experiment be used for?

Instrument upgrade and design

Teaching and learning NS

Separation of scattering contributions from sample and sample
environment.

Analysis of real experimental data

@ Peak broadening of superstructures of the HTSC Laz_,Sr,CuQOa,,
measured at RITA-Il TAS @ PSI.
® Refracting prism measured at the SESANS @ Delft
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EXAMPLE 1 - Virtual experiment Outline
McStas VE HOW-TO

® Eupild instmment including all collimators
® Teat inztroment on powder 28 zean

® Text instrurment energy rezolution on Vanadivm

& Set sample mozaicity v Tocking corve

INARITLTSNT

® Set zamplesize

® Set uncertainty in latice parameter va

-

Perfiorm VE correzponding to instrumental
rezalntion limited experimertal data

longitudinal scan

Finite size peak broadening? a

#® Teconwolute finite size peak broadening
from experimental data

EDOTOHIIOW

by companng to ¥E data
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Virtual experiments - Building in McStas

McStas
V-RITA-II

RITA-Il TAS @ PSI with vertically focusing monochro-
mator and multiblade analyser.
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Virtual experiments - Building in McStas

McStas
V-RITA-II

RITA-Il TAS @ PSI with vertically focusing monochro-
mator and multiblade analyser. Effective instrumen-
tal resolution and thereby the linewidth of a particular
scan depends on
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Virtual experiments - Building in McStas

McStas
V-RITA-II

RITA-Il TAS @ PSI with vertically focusing monochro-
mator and multiblade analyser. Effective instrumen-
tal resolution and thereby the linewidth of a particular
scan depends on
® Divergence of the beam before the
monochromator: Size of source, geometry
and m-values of guide elements

s s s
I N W

Focusing monochromaor  Collimater
2

Jdby, Nano- and eSciencenCent;Es, Niels Bohr Institute, University of Copenhagen



Virtual experiments - Building in McStas

McStas
V-RITA-II

RITA-Il TAS @ PSI with vertically focusing monochro-
mator and multiblade analyser. Effective instrumen-
tal resolution and thereby the linewidth of a particular
scan depends on

® Divergence of the beam before the
monochromator: Size of source, geometry
and m-values of guide elements

® Mosaicity of the monochromator
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Virtual experiments - Building in McStas

McStas
V-RITA-II

RITA-Il TAS @ PSI with vertically focusing monochro-
mator and multiblade analyser. Effective instrumen-
tal resolution and thereby the linewidth of a particular
scan depends on

® Divergence of the beam before the
monochromator: Size of source, geometry
and m-values of guide elements

Mosaicity of the monochromator

Mosaicity of the analyser
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Virtual experiments - Building in McStas

McStas
V-RITA-II

RITA-Il TAS @ PSI with vertically focusing monochro-
mator and multiblade analyser. Effective instrumen-
tal resolution and thereby the linewidth of a particular
scan depends on

® Divergence of the beam before the
monochromator: Size of source, geometry
and m-values of guide elements

Mosaicity of the monochromator
Mosaicity of the analyser

Geometrical factors: Sizes of components
and distances between them
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Virtual experiments - Building in McStas

McStas
V-RITA-II

RITA-Il TAS @ PSI with vertically focusing monochro-
mator and multiblade analyser. Effective instrumen-
tal resolution and thereby the linewidth of a particular
scan depends on

® Divergence of the beam before the
monochromator: Size of source, geometry
and m-values of guide elements

Mosaicity of the monochromator
Mosaicity of the analyser

Geometrical factors: Sizes of components
and distances between them

® Divergence of collimators
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Virtual experiments - Building in McStas

McStas
V-RITA-II

RITA-Il TAS @ PSI with vertically focusing monochro-
mator and multiblade analyser. Effective instrumen-
tal resolution and thereby the linewidth of a particular
scan depends on

® Divergence of the beam before the
monochromator: Size of source, geometry
and m-values of guide elements

Mosaicity of the monochromator
Mosaicity of the analyser

Geometrical factors: Sizes of components
and distances between them

Divergence of collimators

Point-spread function of the position sensitive
detector (PSD)

Focusing movocnomaor  Callmator Meoior Sit Pargex  Sample
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l \ \r\///,u/

im]

04

Jdby, Nano- and eSciencenCent;Es, Niels Bohr Institute, University of Copenhagen



Virtual experiments - Building in McStas

McStas
V-RITA-II

RITA-Il TAS @ PSI with vertically focusing monochro-
mator and multiblade analyser. Effective instrumen-
tal resolution and thereby the linewidth of a particular
scan depends on

® Divergence of the beam before the
monochromator: Size of source, geometry
and m-values of guide elements

Mosaicity of the monochromator
Mosaicity of the analyser

Geometrical factors: Sizes of components
and distances between them

Divergence of collimators

Point-spread function of the position sensitive

detector (PSD)
i w“'l"“" G ® Absolute energy of the incoming and
E scattered beam
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Virtual experiments - Building in McStas

McStas
V-RITA-II

RITA-Il TAS @ PSI with vertically focusing monochro-
mator and multiblade analyser. Effective instrumen-
tal resolution and thereby the linewidth of a particular
scan depends on

® Divergence of the beam before the
monochromator: Size of source, geometry
and m-values of guide elements

Mosaicity of the monochromator
Mosaicity of the analyser

Geometrical factors: Sizes of components
and distances between them

Divergence of collimators

Point-spread function of the position sensitive

detector (PSD)
i w“'l"“" G ® Absolute energy of the incoming and

scattered beam

® Sample parameters
- shape/size (all samples including
incoherent scatterer, powder, single-crystal)
- particle size in sample (powder)
- mosaicity and uncertainty in lattice
parameters (single-crystal)
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Virtual experiments - testing conclusion

# Experiment Year Scale Int Linewidth
5 PowderN reflections (10-2)/(104)/(2-10) 2008 0.55 10% 2%
6 Elastic energy resolution (V sample) 2008 0.55 10% 2% (8%)
7 Ge single crystal 2008 0.55 10% 2%
8 Ge wafer (perfect single crystal) 2008 0.55 10% 10%

e Intensity

e Position

o Width
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Virtual experiments - testing conclusion

# Experiment Year Scale Int Linewidth
5 PowderN reflections (10-2)/(104)/(2-10) 2008 0.55 10% 2%

6 Elastic energy resolution (V sample) 2008 0.55 10% 2% (8%)
7 Ge single crystal 2008 0.55 10% 2%

8 Ge wafer (perfect single crystal) 2008 0.55 10% 10%

¢ Intensity - Same scaling factor
(due to efficiency of detector and taget neutron yield)
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Virtual experiments - testing conclusion

# Experiment Year Scale Int Linewidth
5 PowderN reflections (10-2)/(104)/(2-10) 2008 0.55 10% 2%

6 Elastic energy resolution (V sample) 2008 0.55 10% 2% (8%)
7 Ge single crystal 2008 0.55 10% 2%

8 Ge wafer (perfect single crystal) 2008 0.55 10% 10%

¢ Intensity - Same scaling factor
(due to efficiency of detector and taget neutron yield)

e Position - Within 0.05° corresp. small energy diff. of 0.1%
o Width
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Virtual experiments - testing conclusion

# Experiment Year Scale Int Linewidth
5 PowderN reflections (10-2)/(104)/(2-10) 2008 0.55 10% 2%

6 Elastic energy resolution (V sample) 2008 0.55 10% 2% (8%)
7 Ge single crystal 2008 0.55 10% 2%

8 Ge wafer (perfect single crystal) 2008 0.55 10% 10%

¢ Intensity - Same scaling factor
(due to efficiency of detector and taget neutron yield)

e Position - Within 0.05° corresp. small energy diff. of 0.1%
o Width - Mostly within 2%
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ik Virtual experiments - SINGLE-CRYSTAL samples

Real sample (LSCO+O) Virtual sample (LSCO)

__
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ik Virtual experiments - SINGLE-CRYSTAL samples

Real sample (LSCO+O) Virtual sample (LSCO)
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e Broadening due to stress/strain

Virtual sample (LSCO)

__
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Real sample (LSCO+O)

e Broadening due to stress/strain

Virtual sample (LSCO)

_

Stress/strain included in 22 and mosaicity
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“ Virtual experiments - SINGLE-CRYSTAL samples

Real sample (LSCO+O) V|rtual sample (LSCO)
e Broadening due to stress/strain Stress/strain included in 22 and mosaicity

e Broadening due to finite size effects
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“ Virtual experiments - SINGLE-CRYSTAL samples

Real sample (LSCO+O)

e Broadening due to stress/strain

e Broadening due to finite size effects

Virtual sample (LSCO)

_

Stress/strain included in 22 and mosaicity

Narrow peaks - instrumental width
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Virtual experiments - SINGLE-CRYSTAL samples

Real sample (LSCO+O) V|rtual sample (LSCO)
e Broadening due to stress/strain Stress/strain included in 22 and mosaicity
o Broadening due to finite size effects Narrow peaks - instrumental width

Using the VE linewidth as ’homogeneous sample resolution’, the
deconvoluted width of experimental data is due to finite size effects!
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" Virtual experiments - adjusting SINGLE-CRYSTAL
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" Virtual experiments - adjusting SINGLE-CRYSTAL
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e McStas o RITA-II

® Fundamental reflections

® Assume peaks instr. res.
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" Virtual experiments - adjusting SINGLE-CRYSTAL
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" Virtual experiments - adjusting SINGLE-CRYSTAL

3500
3000
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» 2000
2 e McStas o RITA-II
© 1500
1000 ® Fundamental reflections
500 ® Assume peaks instr. res.
® Use to set mosaicity and
715 72 725 73 1.95 2 2.05 Ad .
a3 [deg] gl [r.lu] = of virtual sample
6000, ® Simulated (resolution)
S width agrees within 5% of
5000
measured
4000 °
)
9 3000
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[o]
1000
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# Experiment Scale Int Line width
9 LSCO+0 x=0 (fund. KL reflections) 0.3 20% 5%
10 LSCO+0 x=0.04 (fund. KL reflections) 0.4 5% 5%
11 LSCO+0O x=0.065 (fund. KL reflections) 0.55 20% 5%
12 LSCO+0 x=0.09 (fund. HK reflections) 0.7 10% 5%
14 LSCO+0 x=0.09 (fund. KL reflections) 1.5 10% 5%
e Intensity
¢ Position
e Width
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" Virtual experiments - adjusting SINGLE-CRYSTAL

# Experiment Scale Int Line width
9 LSCO+0 x=0 (fund. KL reflections) 0.3 20% 5%
10 LSCO+0 x=0.04 (fund. KL reflections) 0.4 5% 5%
11 LSCO+0O x=0.065 (fund. KL reflections) 0.55 20% 5%
12 LSCO+0 x=0.09 (fund. HK reflections) 0.7 10% 5%
14 LSCO+0 x=0.09 (fund. KL reflections) 1.5 10% 5%

e Intensity - scale influenced by sample geometry
(and varying n.y. from source over the years)

e Position
o Width
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" Virtual experiments - adjusting SINGLE-CRYSTAL

# Experiment Scale Int Line width
9 LSCO+0 x=0 (fund. KL reflections) 0.3 20% 5%
10 LSCO+0 x=0.04 (fund. KL reflections) 0.4 5% 5%
11 LSCO+0O x=0.065 (fund. KL reflections) 0.55 20% 5%
12 LSCO+0 x=0.09 (fund. HK reflections) 0.7 10% 5%
14 LSCO+0 x=0.09 (fund. KL reflections) 1.5 10% 5%

e Intensity - scale influenced by sample geometry
(and varying n.y. from source over the years)

e Position - within 0.2% (when adjusted in physical exp.)
o Width
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" Virtual experiments - adjusting SINGLE-CRYSTAL

# Experiment Scale Int Line width
9 LSCO+0 x=0 (fund. KL reflections) 0.3 20% 5%
10 LSCO+0 x=0.04 (fund. KL reflections) 0.4 5% 5%
11 LSCO+0O x=0.065 (fund. KL reflections) 0.55 20% 5%
12 LSCO+0 x=0.09 (fund. HK reflections) 0.7 10% 5%
14 LSCO+0 x=0.09 (fund. KL reflections) 1.5 10% 5%

e Intensity - scale influenced by sample geometry
(and varying n.y. from source over the years)

e Position - within 0.2% (when adjusted in physical exp.)
o Width - within 5%
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Las_xSryCuOy.,y:

x=0.09

0.0

0.06

Cts/s

:
11 i f

0.08 0.1 0.12 0.14 0.16
ak

e The IC AFM peak is narrow and close to resolution limited...
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Las_xSryCuOy.,y:

x=0.09

0.0
—— RITA gFWHM=0.0099 IFWHM=0.005+/~0.00:
——McS scale=0.002 FWHM=0.0099+/~0.0002

Cts/s

002558 0.1 0.12

e The IC AFM peak is narrow and close to resolution limited...
but effects larger than 10% are observable by McStas VE
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" Lag_xSryCuOy,y:

x=0.09

0.0

—— RITA gFWHM=0.0099 IFWHM=0.005+/~0.00:
——McS scale=0.002 FWHM=0.0099+/~0.0002

IC AFM broadened:

Fit to Voigt

wl =0.06(2) nm~—! =
Corr.= 2. = 34+ 13 nm

wk —

Cts/s

Fit to Gaussian

% w= /W — w?

wG=0.10 nm~1 =
0.08 0.1 O.12qk 0.14 0.16 D — % ~ 61:|:14 nm

e The IC AFM peak is narrow and close to resolution limited...
but effects larger than 10% are observable by McStas VE
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Laz_xSrxCuQyy, X = 0.04:

x=0.04
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Laz_xSrxCuQyy, X = 0.04:

x=0.04

Scan through (014). Ad/d=4e-3, mos 16, no plexi

4
- - - RITA FWHM=0.082+/-0.005
—— McS scale=0.15 FWHM=0.04+/-0.001

Cts/s
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Laz_xSrxCuQyy, X = 0.04:

x=0.04

Scan through (014). Ad/d=4e-3, mos 16, no plexi

4
- - - RITA FWHM=0.082+/-0.005
—— McS scale=0.15 FWHM=0.04+/-0.001

Cts/s

e Mcstas VE is a useful tool when there is no instrumentally

resolved peak in the vicinity
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Laz_xSrxCuQyy, X = 0.04:

x=0.04

Scan through (014). Ad/d=4e-3, mos 16, no plexi

= = = RITA FWHM=0.082+/-0.005
—— McS scale=0.15 FWHM=0.04+/-0.001|

Bragg peak broadened:
wG=0.34 nm—!
Domain size % ~19+3nm

Cts/s

Superstructure broadened:
wG=0.64 nm—!
Domain size % ~10+1nm

e Mcstas VE is a useful tool when there is no instrumentally
resolved peak in the vicinity
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Conclusion on the VE with RITA-II
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" Conclusion on the VE with RITA-II

e McStas VE can be used to obtain detailed knowledge of the
resolution in specific instrument configurations
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" Conclusion on the VE with RITA-II

e McStas VE can be used to obtain detailed knowledge of the
resolution in specific instrument configurations

e McStas VE can be used to deconvolute finite size peak width from
experimental data
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" Conclusion on the VE with RITA-Il

e McStas VE can be used to obtain detailed knowledge of the
resolution in specific instrument configurations

e McStas VE can be used to deconvolute finite size peak width from
experimental data

e McStas VE can be used to set lower and upper limit of
domainsize. Even at several hundred A.
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" Conclusion on the VE with RITA-Il

e McStas VE can be used to obtain detailed knowledge of the
resolution in specific instrument configurations

e McStas VE can be used to deconvolute finite size peak width from
experimental data

e McStas VE can be used to set lower and upper limit of
domainsize. Even at several hundred A.

Want to know more? Take at look at Udby et al. NIMA 634 (2011)

Jdby, Nano- and eScience Centres, Niels Bohr Institute, University of Copenhagen



\ Acknowledgements RITA-II

| would like to thank my coworkers:

e McStas VE: Kim Lefmann(UCPH/ESS-DK),
Peter K. Willendrup (Risg DTU),
Erik Knudsen(Risg DTU), Emmanuel Farhi (ILL)

e Real Experiments:
Christof Niedermayer (PSI), Niels H. Andersen (Risg DTU)

e Samples: Barret O. Wells (UCONN), Hashini E. Mohottala(UCONN),
Samuel B. Emery (UCONN), F.-C. Chou (TAIWAN)

Jdby, Nano- and eScience Centres, Niels Bohr Institute, University of Copenhagen



" EXAMPLE 2 : REFRACTING PRISM IN SESANS

Outline
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" EXAMPLE 2 : REFRACTING PRISM IN SESANS

Outline

e How do | implement magnetic fields in McStas?
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" EXAMPLE 2 : REFRACTING PRISM IN SESANS

QOutline
e How do | implement magnetic fields in McStas?
e SESANS - the Delft version

e Virtual vs real experiments with refracting prism

Jdby, Nano- and eScience Centres, Niels Bohr Institute, University of Copenhagen



Example Entries | in Instrument file

A circular source (radius 10 cm) aimed at a guide opening 1 m downstream, with main wavelength Lambda = DL
COMPONENT source = Source_simple (
radius = 0.01, dist = 1.0,
focus_xw = 21.5e-3, focus_yh = 80e-3,
lambda0 = Lambda,dlambda = DL)
AT (0, 0, 0) RELATIVE Origin
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Example Entries Il in Instrument file

Entry into a region with nonzero magnetic field B = (0, By, 0).
Field starts 2 mm after the component something

COMPONENT guide_field=Pol_simpleBfield (
xwidth=0.5, yheight=0.3,
Bx=0, By=By, Bz=0,

fieldFunction=const_magnetic_field)
AT (0,0,0.002) RELATIVE something
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7 Example Entries Il in Instrument file

Entry into a region with nonzero magnetic field B = (0, By, 0).
Field starts 2 mm after the component something

COMPONENT guide_field=Pol_simpleBfield (
xwidth=0.5, yheight=0.3,
Bx=0, By=By, Bz=0,

fieldFunction=const_magnetic_field)
AT (0,0,0.002) RELATIVE something

v

... and ends 2.025 m thereafter

COMPONENT guide_field_stop=Pol_simpleBfield_stop (

magnet_comp_stop=guide_field)
AT (0,0,2.025) RELATIVE guide_field
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How does precession work in McStas

while ny < tiarger do
store neutron;

sample magnetic field: By = B(n,,n,,n.,1,);
propagate neutromn: §t(< At);
sample magnetic field: By = B(n,,ny, 7., m):
if [By — Ba| > dinreshota then

restore neutron;

ot == 6t /2;

propagate neutron: &t(< At);

sample magnetic field: By = B(n,, ny,n.,m);
else
L precess polarization: P by w around Edz’ﬁ-‘:
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How does precession work in McStas

while ny < tiarger do
store neutron; while 7, < tyarg0e do
sample magnetic field: By = B(ng,ny, n.,m); store neutron;

e : sample initial magnetic field: By = B(n,,ny,n.,n;);
propagate neutron: ot(< At); Totate to local coordinate system so By is along z-axis;

sample magnetic field: By = B(n,,ny, 7., m): calculate S(st) by Romberg Integration;
if ‘Bl — Bz‘ > Sihreshold then propagate neutron: at(< At);
restore neutron: sample magnetic field: By = B(n,, ny,n.,m);
__ . while £, < 6t do
9t =0t /2; s B(t,1) from Romberg Integration to

make table of S(t,1.) vers
propagate neutron: &t(< At); L be used in the Runge-Kutta procedure;
sample magnetic field: By = B(n,, ny,n.,m); obtain start values for § and ¢;

: solve differential equations for A(S) and ¢(S) by Runge-Kutta
Cash-Karp;
update P according to 6(S) and ¢(S);

else
L precess polarization: P by w around BBz,
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while ny < tyg.ge do

store neutron;

sample magnetic field: By = B(ng, ny, n.,m);
propagate neutron: dt(< At);

sample magnetic field: By = B(n,,n,, n.,mn,);

if [By — Ba| > dihreshota then
restore neutron;

ot = 6t /2;

propagate neutron: &t (< At);

sample magnetic field: By = B(ng, ny,n.,m,);

else
L precess polarization: P by w around Edz’ﬁl:

Polarisation

Y g

08 [f-4 ] i

17 x Py theory
06 % Py theory ,,
[T3} Pziheory
04 "fd ¥
thih A
|

02 e \

0 £ NN i 5,
.\ R =
04

0 2 4 6 8 10 12 14 16 18 20

Adiabaticity coefficient, E

Adiabacity coefficient E = —2vBAt/m, where At = mpAL/h
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How does precession work in McStas

T T P
5 py o
08 |4 ] g
# 'Q; Ex,lheory
0.6 Y theory -
while ny < tyg.ge do [0 Dv; “Ptheory
store neutron; S o4 ARl
sample magnetic field: By = B(n,,ny, n.,7); g . 4' 4 T j,p
propagate neutron: dt(< At); % 02 I ﬂ &
sample magnetic field: By = B(n,,ny,n.,m); a D‘; I oF % S
if By = Ba| > Gihreshota then [i)f ;i B e
restore neutron; s i wf s
bt == 8t/2; 02 L
propagate neutron: &t (< At); %
sample magnetic field: By = B(n,, n,,n.,m:); -04
else ple mas 2 = B(nayny,na,me 0 2 4 6 8 10 12 14 16 18 20
L precess polarization: P by w around Edz’ﬁl: Adiabaticity coefficient, &

Adiabacity coefficient E = —2yBAt/7, where At = mpAL/h

See Knudsen et al., Submitted to Journal of Neutron Research (2012)
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" The SE-SANS Technique sketched

A
‘ PX:
P1 /ﬁr\‘
Y /8, A6
X

Z

¢ The faces of the magnetic precession field B inclined by 6,
o B aligned parallel and anti-parallel to the x-axis

e The trajectory of a neutron beam with polarisation vector P is
deviated by A#
resulting in net difference in precession angle, Ay
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" The SE-SANS Technique sketched

SE-SANS measures the transmission of polarisation P(Z) which is
directly related to the projection of the autocorrelation function of the
sample density distribution along the neutron path.

Spin echo length (“the lengthscale at which sample features are

probed”):

CA2L < cot(fp) >a
2

l.e. Z can be scanned by scanning B, A or L.

Z= B
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" The SE-SANS Technique sketched

SE-SANS measures the transmission of polarisation P(Z) which is
directly related to the projection of the autocorrelation function of the
sample density distribution along the neutron path.

Spin echo length (“the lengthscale at which sample features are

probed”):

CA2L < cot(fp) >a
2

l.e. Z can be scanned by scanning B, A or L.

In a virtual experiment anything can be scanned.

Z= B
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" Why SE-SANS instead of traditional SANS?

e The divergence of the neutron beam is encoded, no need for hard
collimation like classical SANS

» Good resolution of sizes (10~°rad), competing with USANS

e Broad size-range: The special foil-flipper setup makes it possible
to measure structures of sizes 5 nm-20 m size.

Rekveldt et al, Rev. Sci. Instr. 76 (2005)

Jdby, Nano- and eScience Centres, Niels Bohr Institute, University of Copenhagen



M P m2 M, M, FSSM; M, T2 A D

& Fof fa—p

e
\
¢ The faces of the magnetized foils are inclined by 6

o B aligned parallel (and anti-parallel in the other set) to the y-axis

e The trajectory of a neutron beam with polarisation vector P is
deviated by A#
resulting in net difference in precession angle, Ay

Jdby, Nano- and eScience Centres, Niels Bohr Institute, University of Copenhagen



" Foil Flipper Magnets

Model is parameterized by:
e Pole shoe geometry.
e Spin-flip foil inclination.

o Magnetic field (correction) W
B

function inside.

Ideal: spin-flip in xz-plane. y
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" Foil Flipper Magnets

Model is parameterized by:

e Pole shoe geometry.

Magnet

e Spin-flip foil inclination.

neutron trajectory 000000 00 0OOGOIO OO
o Magnetic field (correction) W
B

function inside. W
Ideal: spin-flip in xz-plane.

{2

The error may be corrected by a z
small Bz # 0 component.
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4 magnets — 2 sets of “regular” oblique SE-SANS precession sections
— factor of 2 in spin echo length:

cA2L < cot(fp) >a
T

Z= B

Rekveldt et al Rev. Sci. Instr. 76, 033901 (2005)
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" Polariser/Analyser

Idealized versions.

e Polariser (assuming unpolarised beam):

l.
Iin = /07 Pin = (Oa 07 O) = IOUt = g, POUt = (Oa 1 ’ 0)

e Analyser:

1+P-(0,1,0)

lin=1l, Pn=P = lout=1h 5

)POUT = (07 170)

... for polariser/analyser set to transmit P = (0, 1,0)
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' Sample - Aluminium wedge

9.=10°

The refraction angle depends on the inclination angle of the wedge
with respect to the average neutron beam direction as:

1
A = 595 cot s (1)

A=0.2nm
0. =1.85-10"3rad
AH =9.75-10"%rad = 0.00056°.
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" Sample model

e Aluminium wedge modelled as a forced scatterer

Jdby, Nano- and eScience Centres, Niels Bohr Institute, University of Copenhagen



" Sample model

Aluminium wedge modelled as a forced scatterer

Rotates all neutrons around the x-axis according to the specified
scattering angle.
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" Sample model

Aluminium wedge modelled as a forced scatterer

Rotates all neutrons around the x-axis according to the specified
scattering angle.

No approximation of scattering angle for neutrons distributed
around average beam direction along x
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" Sample model

Aluminium wedge modelled as a forced scatterer

Rotates all neutrons around the x-axis according to the specified
scattering angle.

No approximation of scattering angle for neutrons distributed
around average beam direction along x

but approximation for distribution of neutrons along y.
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Phase shift

e The phase shift A¢ is found experimentally by tuning an external
field outside the main precession regions.

o
o

(1,-1/0,+1)
o
P=(,-1)/0,+1)

P=

|
o
o

-1

Adglrad] from scanning B, Adgirad] from scanning B,
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" Phase shift

e The phase shift A¢ is found experimentally by tuning an external
field outside the main precession regions.

e The polarisation is measured as a weighted difference of spin-up,
lu, and spin-down, Iy intensities.

o
o

=3

(1,-1/0,+1)
P=(,-1)/0,+1)

[
|

o

o

-1

Agfrad] from scanning B,

Veoil

Agirad] from scanning B,

Veoil
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" Phase shift

e The phase shift A¢ is found experimentally by tuning an external
field outside the main precession regions.

e The polarisation is measured as a weighted difference of spin-up,
lu, and spin-down, Iy intensities.

e Small depolarisation without correction coil (e sample, o empty)

o
o

=3

(1,-1/0,+1)
P=(,-1)/0,+1)

[
|

o

o

-
-
N
W3
IS
o
£
N

Agfrad] from scanning B,

Agfrad] from scanning Bvcml Veoil
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Y Phase shift

e The phase shift A¢ is found experimentally by tuning an external
field outside the main precession regions.

e The polarisation is measured as a weighted difference of spin-up,
lu, and spin-down, Iy intensities.

e Small depolarisation without correction coil (e sample, o empty)

¢ No depolarisation with correction coil (e sample, o empty)

o
o

=3

(1,=1/01,+1)

P=(,-1)/0,+1)

p:
|

o

o

-
-
N
W3
IS
o
£
N

Agfrad] from scanning B,

Agfrad] from scanning Bvcml Veoil
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There is a linear relation between phase shift and spin-echo length

A
Ap =N .
¢ btan O

(@)

N is the coherent scattering amplitude density of the refracting
sample wedge material which we want to measure

The spin-echo length was changed by changing the precession
field B.

For each new Z, the tuning field is scanned and the curve fit to a
cosine to find the phase shift.
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e Putting the right angle in the beam (6s = 45°) gives scattering
angle 2A60
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e Putting the right angle in the beam (6s = 45°) gives scattering
angle 2A60

¢ Eliminates the effects of slight misplacing of the 65 angle.
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e Putting the right angle in the beam (6s = 45°) gives scattering
angle 2A60

¢ Eliminates the effects of slight misplacing of the 65 angle.

06
0.6,
05
05| _
5
° £ 04 }
04
2 o 1
é £ 03
£03 o =
2 2
[ o T {
0.1] o 0.1]
ar
[ 1 2 3 4 5 0 1 2 3 4 5

Z[um] Z [um]
E. Knudsen, L. Udby et al, Physica B406 (2011)  Rekveldt et al, Physica B 350 (2004)
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e Putting the right angle in the beam (6s = 45°) gives scattering
angle 2A60

¢ Eliminates the effects of slight misplacing of the 65 angle.

e Simulated fitted slope of 0.11 rad/m compares well with measured
fitted slope of 0.102(5) rad/m.

Phaseshift Ag
o
@

o
Phaseshift Ag [rad]
e

o

o
N

°

o

o
s

0 1 2 3 4 5 % 1 2 3 4 5

Z[um] Z [um]
E. Knudsen, L. Udby et al, Physica B406 (2011)  Rekveldt et al, Physica B 350 (2004)
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' SESANS Conclusion/Outlook

We are on the way towards Virtual SE-SANS Experiments but much
needs to be done
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" SESANS Conclusion/Outlook

We are on the way towards Virtual SE-SANS Experiments but much
needs to be done

¢ Realistic magnetic fields
stray fields, imperfections, read from Fin. Elem. Meth.

Realistic polariser/analyser and 7 /2 rotator

Other samples

Implement source + guide + monochromator + detector efficiency
models
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" SESANS Conclusion/Outlook

We are on the way towards Virtual SE-SANS Experiments but much
needs to be done

¢ Realistic magnetic fields
stray fields, imperfections, read from Fin. Elem. Meth.

» Realistic polariser/analyser and 7 /2 rotator
e Other samples

e Implement source + guide + monochromator + detector efficiency
models

e Further investigation of depolarisation effects

Want to know more? Take at look at Knudsen, Udby et al. Physica B

206 (2011)
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Thank you for staying awake!
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