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• What is a virtual (neutron) experiment?
• What can it be used for?

1 EXAMPLE 1: PEAK BROADENING IN LSCO+O
2 EXAMPLE 2: PHASESHIFT BY REFRACTING PRISM IN SESANS
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What is a virtual (neutron) experiment?

What is a virtual (neutron) experiment?

• The neutrons rays must have absolute intensity units and should
be traced through the whole instrument, from source to detector.

• The description of the instrument should be as close as possible
to the reality. This is in particular the case for the sample.

• The virtual instrument is controlled like the real instrument, and
the resulting data are analyzed like real data.

More in Lefmann et al JNR 16(3-4), 97-111 (2008)
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What can virtual experiment be used for?

• Instrument upgrade and design

• Teaching and learning NS

• Separation of scattering contributions from sample and sample
environment.

• Analysis of real experimental data

1 Peak broadening of superstructures of the HTSC La2−xSrxCuO4+y

measured at RITA-II TAS @ PSI.
2 Refracting prism measured at the SESANS @ Delft
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What can virtual experiment be used for?

• Instrument upgrade and design
• Teaching and learning NS
• Separation of scattering contributions from sample and sample

environment. Example TOF on liquid Ge

E. Farhi, M. Johnson, V. Hugouvieux and W. Kob, ILL Annual Report (2006) 87
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EXAMPLE 1 - Virtual experiment Outline

Single-crystal sample

Finite size peak broadening?
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Virtual experiments - Building INSTRUMENT in McStas

RITA-II TAS @ PSI with vertically focusing monochro-
mator and multiblade analyser. Effective instrumen-
tal resolution and thereby the linewidth of a particular
scan depends on

• Divergence of the beam before the
monochromator: Size of source, geometry
and m-values of guide elements

• Mosaicity of the monochromator

• Mosaicity of the analyser

• Geometrical factors: Sizes of components
and distances between them

• Divergence of collimators

• Point-spread function of the position sensitive
detector (PSD)

• Absolute energy of the incoming and
scattered beam

• Sample parameters
- shape/size (all samples including

incoherent scatterer, powder, single-crystal)
- particle size in sample (powder)
- mosaicity and uncertainty in lattice

parameters (single-crystal)
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Virtual experiments - testing INSTRUMENT

Vanadium sample

Powder sample

Linda Udby, Nano- and eScience Centres, Niels Bohr Institute, University of Copenhagen

n
McStas

7/34



Virtual experiments - testing INSTRUMENT conclusion

# Experiment Year Scale Int Linewidth
5 PowderN reflections (10-2)/(104)/(2-10) 2008 0.55 10% 2%
6 Elastic energy resolution (V sample) 2008 0.55 10% 2% (8%)
7 Ge single crystal 2008 0.55 10% 2 %
8 Ge wafer (perfect single crystal) 2008 0.55 10% 10%

• Intensity - Same scaling factor
(due to efficiency of detector and taget neutron yield)

• Position - Within 0.05◦ corresp. small energy diff. of 0.1%

• Width - Mostly within 2%
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Virtual experiments - SINGLE-CRYSTAL samples

Real sample (LSCO+O) Virtual sample (LSCO)

• Broadening due to stress/strain Stress/strain included in ∆d
d and mosaicity

• Broadening due to finite size effects Narrow peaks - instrumental width

Using the VE linewidth as ’homogeneous sample resolution’, the
deconvoluted width of experimental data is due to finite size effects!
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Virtual experiments - adjusting SINGLE-CRYSTAL

• McStas ◦ RITA-II
• Fundamental reflections

• Assume peaks instr. res.

• Use to set mosaicity and
∆d
d of virtual sample

• Simulated (resolution)
width agrees within 5% of
measured
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Virtual experiments - adjusting SINGLE-CRYSTAL

# Experiment Scale Int Line width
9 LSCO+O x=0 (fund. KL reflections) 0.3 20% 5%
10 LSCO+O x=0.04 (fund. KL reflections) 0.4 5% 5%
11 LSCO+O x=0.065 (fund. KL reflections) 0.55 20% 5%
12 LSCO+O x=0.09 (fund. HK reflections) 0.7 10% 5%
14 LSCO+O x=0.09 (fund. KL reflections) 1.5 10% 5%

• Intensity - scale influenced by sample geometry
(and varying n.y. from source over the years)

• Position - within 0.2% (when adjusted in physical exp.)

• Width - within 5%
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12 LSCO+O x=0.09 (fund. HK reflections) 0.7 10% 5%
14 LSCO+O x=0.09 (fund. KL reflections) 1.5 10% 5%

• Intensity - scale influenced by sample geometry
(and varying n.y. from source over the years)

• Position - within 0.2% (when adjusted in physical exp.)

• Width - within 5%
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La2−xSrxCuO4+y : IC AFM (stripe) peak broadening

x=0.09

IC AFM broadened:
Fit to Voigt
wL =0.06(2) nm−1 ⇒
Corr.= 2

wL = 34± 13 nm

Fit to Gaussian

w =
√

w2
m − w2

r

wG=0.10 nm−1 ⇒
D = 2π

wG ∼ 61±14 nm

• The IC AFM peak is narrow and close to resolution limited...
but effects larger than 10% are observable by McStas VE
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La2−xSrxCuO4+y , x = 0.04: STAGING peak broadening

x=0.04

Bragg peak broadened:
wG=0.34 nm−1

Domain size 2π
wG ∼ 19 ± 3 nm

Superstructure broadened:
wG=0.64 nm−1

Domain size 2π
wG ∼ 10 ± 1 nm

• Mcstas VE is a useful tool when there is no instrumentally
resolved peak in the vicinity
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Conclusion on the VE with RITA-II

• McStas VE can be used to obtain detailed knowledge of the
resolution in specific instrument configurations

• McStas VE can be used to deconvolute finite size peak width from
experimental data

• McStas VE can be used to set lower and upper limit of
domainsize. Even at several hundred Å.

Want to know more? Take at look at Udby et al. NIMA 634 (2011)
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EXAMPLE 2 : REFRACTING PRISM IN SESANS

Outline

• How do I implement magnetic fields in McStas?

• SESANS - the Delft version

• Virtual vs real experiments with refracting prism
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Example Entries I in Instrument file

A circular source (radius 10 cm) aimed at a guide opening 1 m downstream, with main wavelength Lambda ± DL

COMPONENT source = Source_simple(

radius = 0.01, dist = 1.0,

focus_xw = 21.5e-3, focus_yh = 80e-3,

lambda0 = Lambda,dlambda = DL)

AT (0, 0, 0) RELATIVE Origin
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Example Entries II in Instrument file

Entry into a region with nonzero magnetic field B = (0, By , 0).
Field starts 2 mm after the component something

COMPONENT guide_field=Pol_simpleBfield(

xwidth=0.5,yheight=0.3,

Bx=0, By=By, Bz=0,

fieldFunction=const_magnetic_field)

AT (0,0,0.002) RELATIVE something

... and ends 2.025 m thereafter

COMPONENT guide_field_stop=Pol_simpleBfield_stop(

magnet_comp_stop=guide_field)

AT(0,0,2.025) RELATIVE guide_field
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How does precession work in McStas
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How does precession work in McStas

Adiabacity coefficient E = −2γB∆t/π, where ∆t = mnλL/h
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How does precession work in McStas

Adiabacity coefficient E = −2γB∆t/π, where ∆t = mnλL/h

See Knudsen et al., Submitted to Journal of Neutron Research (2012)
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The SE-SANS Technique sketched

x

y

z

θ

P

∆ϕ

P

P

∆θ0

• The faces of the magnetic precession field B inclined by θ0

• B aligned parallel and anti-parallel to the x-axis

• The trajectory of a neutron beam with polarisation vector P is
deviated by ∆θ

resulting in net difference in precession angle, ∆ϕ
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The SE-SANS Technique sketched

SE-SANS measures the transmission of polarisation P(Z ) which is
directly related to the projection of the autocorrelation function of the
sample density distribution along the neutron path.

Spin echo length (“the lengthscale at which sample features are
probed”):

Z =
cλ2L < cot(θ0) >α

2π
B

I.e. Z can be scanned by scanning B, λ or L.
In a virtual experiment anything can be scanned.
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Why SE-SANS instead of traditional SANS?

• The divergence of the neutron beam is encoded, no need for hard
collimation like classical SANS

• Good resolution of sizes (10−5rad), competing with USANS

• Broad size-range: The special foil-flipper setup makes it possible
to measure structures of sizes 5 nm-20 m size.

Rekveldt et al, Rev. Sci. Instr. 76 (2005)
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Foil-flipper version of SE-SANS modelled

BBBB

S

• The faces of the magnetized foils are inclined by θ0

• B aligned parallel (and anti-parallel in the other set) to the y -axis

• The trajectory of a neutron beam with polarisation vector P is
deviated by ∆θ

resulting in net difference in precession angle, ∆ϕ
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Foil Flipper Magnets

Model is parameterized by:

• Pole shoe geometry.

• Spin-flip foil inclination.

• Magnetic field (correction)
function inside.

Ideal: spin-flip in xz-plane.
The error may be corrected by a
small Bz 6= 0 component.

Magnet

Magnet

Y

X

Z

neutron trajectory

Magnetized Spin−flip foil

B

Linda Udby, Nano- and eScience Centres, Niels Bohr Institute, University of Copenhagen

n
McStas

24/34



Foil Flipper Magnets

Model is parameterized by:

• Pole shoe geometry.

• Spin-flip foil inclination.

• Magnetic field (correction)
function inside.

Ideal: spin-flip in xz-plane.
The error may be corrected by a
small Bz 6= 0 component.

Magnet

Magnet

Y

X

Z

neutron trajectory

Magnetized Spin−flip foil

B

Linda Udby, Nano- and eScience Centres, Niels Bohr Institute, University of Copenhagen

n
McStas

24/34



Precession Region

P

B
P

B

P’
M

P

B
P

B
P

P’
M

P

P

B
P

B

P’
M

P

B
P

B
P

P’
M

P

Sample

4 magnets→ 2 sets of “regular” oblique SE-SANS precession sections
→ factor of 2 in spin echo length:

Z =
cλ2L < cot(θ0) >α

π
B

Rekveldt et al Rev. Sci. Instr. 76, 033901 (2005)
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Polariser/Analyser

Idealized versions.

• Polariser (assuming unpolarised beam):

Iin = I0, Pin = (0,0,0) ⇒ Iout =
Iin
2
,Pout = (0,1,0)

• Analyser:

Iin = I0, Pin = P ⇒ Iout = I0
1 + P · (0,1,0)

2
,Pout = (0,1,0)

. . . for polariser/analyser set to transmit P = (0,1,0)
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Sample - Aluminium wedge

o
=10θs

The refraction angle depends on the inclination angle of the wedge
with respect to the average neutron beam direction as:

∆θ =
1
2
θ2

c cot θs (1)

λ = 0.2 nm
θc = 1.85 · 10−3 rad
∆θ = 9.75 · 10−6 rad = 0.00056◦.
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Sample model

• Aluminium wedge modelled as a forced scatterer

• Rotates all neutrons around the x-axis according to the specified
scattering angle.

• No approximation of scattering angle for neutrons distributed
around average beam direction along x

• but approximation for distribution of neutrons along y .
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Phase shift

• The phase shift ∆φ is found experimentally by tuning an external
field outside the main precession regions.

• The polarisation is measured as a weighted difference of spin-up,
Iu, and spin-down, Id intensities.

• Small depolarisation without correction coil (• sample, ◦ empty)
• No depolarisation with correction coil (• sample, ◦ empty)
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Results

• There is a linear relation between phase shift and spin-echo length

∆φ = Nb
λ

tan θs
· Z (2)

• Nb is the coherent scattering amplitude density of the refracting
sample wedge material which we want to measure

• The spin-echo length was changed by changing the precession
field B.

• For each new Z , the tuning field is scanned and the curve fit to a
cosine to find the phase shift.
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Results

• Putting the right angle in the beam (θs = 45◦) gives scattering
angle 2∆θ

• Eliminates the effects of slight misplacing of the θs angle.

• Simulated fitted slope of 0.11 rad/m compares well with measured
fitted slope of 0.102(5) rad/m.
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SESANS Conclusion/Outlook

We are on the way towards Virtual SE-SANS Experiments but much
needs to be done

• Realistic magnetic fields
stray fields, imperfections, read from Fin. Elem. Meth.

• Realistic polariser/analyser and π/2 rotator

• Other samples

• Implement source + guide + monochromator + detector efficiency
models

• Further investigation of depolarisation effects

Want to know more? Take at look at Knudsen, Udby et al. Physica B
206 (2011)
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Thank you for staying awake!
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