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• Most common gas detector  at the moment 

 

 

 

resistive wire            normal wire 

 

• Neutron absorbed at position x  (0 <= x <= L) 

 

Resistive wire tubes 
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x    L - x 



  

 

 

 

 

 

• Rtot = RA + RB    ,   RA = x/L * Rtot     ,   Itot = IA + IB  

 

• IB / Itot = RA / Rtot   = x/L   
 

 

• Position of neutron interaction: B / (A + B) 

Resistive wire tubes 
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IA IB 

RA RB 



  

•  Remember: 

 

• Amplifier at end closest to neutron absorption gives 

biggest signal. 

 

• If neutron is absorbed halfway  signals have same 

amplitude.  

 

Resistive wire tubes 
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Preamplifier optimisation 

 

• Position resolution totally dominated by (electronic) 

signal to noise ratio  have to optimise electronics 

for lowest noise. 

 

• Situation more complicated than with 

semiconductor detectors: 

1) Resistive wire causes additional noise. 

2) Preamplifier has to have a low input impedance. 
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Preamplifier optimisation 

• Position resolution totally dominated by (electronic) 
signal to noise ratio  have to optimise electronics for 
lowest noise. 

 

• Situation more complicated than with semiconductor 
detectors: 

1) Resistive wire causes additional noise 

2) The preamplifier has to have a low input impedance 
(Zin) to minimize “end effects”. 

3) Fast signal to minimize pile-up and misplacing neutrons 

 

• Choose transimpedance preamplifier. 
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Preamplifier optimisation 

 

 

 

 

• Zin = (Rfeedback / A) with A: Open loop gain. 

 

• To minimize Zin : Minimize Rfeedback and maximize A. 

 

• Maximize A  maximize speed of operational amplifier. 

 

• Noise of preamplifier increases with smaller Rfeedback. 

• Faster operation amplifiers are (in general) noisier. 
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Data processing 

• Data shown here with digitiser: Acqiris DC440. 

 

• Pulse shaping done in data analysis program; not in 

analogue electronics. 

 

 

• Warning: to show pulses from gas tube I have to use 

other programs. 
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Neutron pulse shape 

• 3He + n  p (573 keV) + t (191 keV) 

 

• p and t tracks have random orientation. 
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Neutron pulse shape 

 

• Look at real signals. 

 

• Relatively slow preamplifier: optimised for low noise. 

 

 

• 1” (resistive wire ) 3He gas tube 

• 10 bar 3He + 2 bar Ar 
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Neutron pulse shape 

          Fast       Slow 

 

 

 

 

 

 

• 1 µs/div horizontal scale 

• 100 mV/div vertical scale 
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Neutron pulse shape 

 

• Higher stopping gas pressure 

 

• 1” tube 

• 10 bar 3He + 3 bar Ar 
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Neutron pulse shape 

          Fast       Slow 

 

 

 

 

 

 

 Slowest signal is noticeably faster and neutron 
pulses are more similar shaped. 

 

• General shape is true for any type of gas detector. 
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Gamma pulse shape 

• (Compton) electron has long and irregular track 

 

 

 

 

 

• Gamma produce ionisation in larger volume than 
neutron  charges drift longer  signals are wider 

 

• True for any type of gas detector. 

 

• Smaller pulse height. 
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Gamma pulse shape 

• Look at real signals 

 

• Relatively slow preamplifier: optimised for low noise. 

 

 

• 1” (resistive wire ) 3He gas tube 

• 10 bar 3He + 2 bar Ar 
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Gamma pulse shape 

• Hard to give a typical signal 

 

• Random gamma signal: 
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Gamma pulse shape 

• Look at real signals 

 

 

• 1” (resistive wire ) 3He gas tube 

• 10 bar 3He + 3 bar Ar 
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Gamma pulse shape 

• Hard to give a typical signal 

 

• Random gamma signal: 
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Gamma pulse shape 

• Introduction to pulse shape analysis 
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Pulse height 
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Pulse width 

( FWHM ) 

 

Gammas: 

- Low pulse height 

- Wide 



  

Gas gain 

• “Ideal” pulse height spectrum: 

 

 

   ∙ From Reuter Stokes brochure 

     (also shown by Jack Carpenter) 

 

     ∙ Taken at low gas gain  

     

 

 

• Resistive wire tubes require (much) higher gain 

24th July 2012 Neutron detectors  



  

Gas gain 

• Gas gain curve: 

 
 

 

 

 

 

 

 

 

 

• Reuter Stokes gas tube was operating in Proportional 
Region  
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Gas gain 

• Limited Proportional Region 

 

 

• Caused by space charge from ions 

 

 

 

• Pulse height spectrum much broader when 

operating in Limited Proportional Region  
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Gas gain 

• Resistive wire tube: higher gas gives better signal to 

(electronic) noise ratio  better position resolution 

 

• Do we need a good pulse height spectrum? 

 

• Not really, as long as gamma and background 

radiation rejection is sufficient 

 

 Resistive wire tubes usually operated in Limited 

Proportional Region 
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Gas gain 

• How bad do the pulse height spectra get at high gain? 
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Gas gain 

• For even higher voltages/gains 
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Gas gain 

• For even higher voltages/gains 
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Gas gain 

• For highest voltages/gains 

 

 

 

 

 

 

 

 

 

• Spectra are worse under normal operating conditions 

(shorter integration time) 
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Gas gain 

 

• Single ended: 1” , 10 bar  3He, 3 bar Ar  

• Moderate gains 

 

• HT:  1300V   1350V   1450V  

 

 

 

 

 

• “Long” 4 µs integration time 
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Gas gain 
• Resistive wire gas tube: 1” , 10 bar  3He, 3 bar Ar  

• High gains 

 

• HT:   2375V    2425V 

 

 

 

 

 

 

• Integration time doesn’t effect spectrum 

 

• 2375V spectrum still acceptable 
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High rate 

• 8mm  LPSD. Most likely type of detector to get hit 

hard. 

 

• Operating at 1450V 

 

• Slit perpendicular to wire  all charge ends up at 

same part of wire (high space charge density) 

 

• MILAND detector specs: 100kHz/cm2 
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High rate 
• Pulse height spectra: 

• Rate:   35kHz   69kHz 

 

 

 

 

   144kHz   240kHz 
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High rate 

• Gain  drop at high rate same reason as “ugly” 

spectra at high gain (slow ions). 

 

• Gain drop has considerable impact on signal 

processing. 
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Gamma discrimination 
• 2Bar vs 3Bar Argon: Pulse width (FWHM) 

 

 

 

 

 

 

 

 
 

• 3Bar: more overlap n- in pulse height 

   n- don’t merge in 2D  pulse shape discrimination 
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2Bar argon 3Bar argon 
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Gamma discrimination 

• Prefer 3Bar Ar because of shorter pulse. Still good n- 

discrimination. 

 

• Have to consider rate effect. 

 

• Seen from PH spec that gain drops quite sharply at 

high rates  gamma discrimination criterion has to 

stand high rates.  
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Position resolution 

• Measured with, resistive wire gas tube:  

 4m long , 1” , 10 bar  3He, 3 bar Ar 

 

 

 

 

 

• Tests on Merlin beam line 
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Cd mask with 13 slits 
n 



  

Position resolution 

 

• Usually between 0.5% and 1% of tube length  
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Misplacing neutrons 

• Measured on LET with C60 sample at high rate 

 

 

 

• Cylindrical geometry 

 

• Vertical symmetry 
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Misplacing neutrons 
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Misplacing neutrons 

  

24th July 2012 Neutron detectors  

TOF 

P
o

s
it
io

n
  
a

lo
n

g
  
th

e
  
tu

b
e

 



  

Misplacing neutrons 
• Different Z-scale: 
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Misplaced neutrons 

Intensity : ~2.5% of peak 



  

Misplacing neutrons 
• Suspicion: 

 

 

 

 

 

     + 

 

 

     gives: 
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“Ghost” counts caused by two neutrons absorbed very close in time.  

n 



  

Misplacing neutrons 
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“Ghost” counts caused by two neutrons absorbed very close in time.  

Ghost signal: Minute inflection in signal  2 neutrons 

Width of signal might be good  selection criterion 

too  wide 



  

Misplacing neutrons 
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Full Z- scale    Reduced upper limit 

Pulse height 

F
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H
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wide 

signals 

 

Narrow signals 

Plot a bit stripy because FWHM is integer (number of samples) 



  

Misplacing neutrons 
• Where do wide signals appear in TOF plot? 
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FWHM plot.  TOF plot.  

 Spurious events in top of FWHM plot give ghosting.  



  

Misplacing neutrons 
• Where do narrow signals appear in TOF plot? 
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FWHM plot.  TOF plot.  

  Spurious events in bottom of FWHM plot give tails in TOF plot. 



  

Misplacing neutrons 
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Problem: FWHM is hard to determine in real time in a LET ADC card. 
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!!Can estimate FWHM of signal at peak  (provided that signal 

is Gaussian enough) 

 
This “pseudo FWHM” is much easier to implement in ADC 



  

Misplacing neutrons 
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 Very little ghosting 

 



  

Misplacing neutrons 
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Comparing both types of cuts 

Real FWHM cuts    Pseudo FWHM cuts 

Pseudo FWHM cut works well. 



  

Misplacing neutrons 
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2D plots are needed to get quantitative measure of bleeding reduction. 

 

X-cut: sum of these 4 columns 

 

Y-cut: sum of these 22 rows 



  

Background: 100 cnts 

 

No reduction: 1950 cnts 

   

Real FWHM: 285 cnts 

 

Pseudo FWHM: 380 cnts 

 

 

 

Much better ghost 

suppression here 

Misplacing neutrons 
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Ghosting reduction : factor of 10 (real FWHM). 

   : factor of 6.6 (pseudo FWHM) 



  

Misplacing neutrons 
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Ghost reduction hardly reduces counts in diffraction peak 

With ghost reduction: Peak to background ratio is ~200. 

 Difference between real and pseudo FWM cut less obvious 
than in Y-cut plots (why?) 



  

The end 
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