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Resistive wire tubes

 Most common gas detector af the moment
( [
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resistive wire normal wire

* Neutron absorbed at position x (0 <=x <= 1)

A< 3>
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Resistive wire tubes

R Rg
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* Riot=Ra*Rg » Ra=X/L Ryt ligp =g+

* g/ ot = Ra/ Ryop =X/L

« Position of neutron interaction: B / (A + B)
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Resistive wire tubes
e Remember:

« Amplifier at end closest to neutron absorption gives
biggest signal.

* |f neutron is absorbed halfway = signals have same
amplitude.
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Preamplifier optimisation

« Position resolution totally dominated by (electronic)
signal to noise ratio = have to optimise electronics
for lowest noise.

« Situation more complicated than with
semiconductor detectors:

1) Resistive wire causes additional noise.
2) Preamplifier has to have a low input impedance.
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Preamplifier optimisation

« Position resolution totally dominated by (electronic)
signal to noise ratio = have to optimise electronics for
lowest noise.

« Situation more complicated than with semiconductor
detectors:

1) Resistive wire causes additional noise

2) The preamplifier has to have a low input impedance
(Z;,) to minimize “end effects”.

3) Fast signal to minimize pile-up and misplacing neutrons

 Choose transimpedance preamplifier.
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Preamplifier optimisation

S B e I S R
LT T T =1 T *T T *J
. = (Riceapack / A) With A: Open loop gain.

« To minimize Z;, : Minimize R;oeqpack ANA Maximize A.
 Maximize A = maximize speed of operational amplifier.

« Noise of preamplifier increases with smaller Re..qpqck-
« Faster operation amplifiers are (in general) noisier.
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Data processing

« Data shown here with digitiser: Acqiris DC440.

« Pulse shaping done in data analysis program; not in
analogue electronics.

« Warning: to show pulses from gas tube | have to use
other programs.
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Neutron pulse shape

« 3He+Nn=p (573 keV) +1 (191 keV)

 p and t fracks have random orientation.
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Neutron pulse shape

« Look atreal signals.

» Relatively slow preamplifier: optimised for low noise.

« 1" (resistive wire ) 3He gas tube
« 10 bar3He + 2 bar Ar
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Neutron pulse shape

Fast Slow

« | us/div horizontal scale
« 100 mV/div vertical scale
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Neutron pulse shape

« Higher stopping gas pressure

e 1" tube
« 10 bar3He + 3 bar Ar
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Neutron pulse shape

Fast Slow

> Slowest signal is noticeably faster and neutron
pulses are more similar shaped.

« General shape is frue for any type of gas detector.
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Gamma pulse shape

« (Compton) electron has long and irregular track

ﬂ

OL\P Signal /\J\\/\

% |

« Gamma produce ionisation in larger volume than
neutron = charges drift longer = signals are wider

« True for any type of gas detector.

Smaller pulse height.
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Gamma pulse shape

« Look atreal signals

» Relatively slow preamplifier: optimised for low noise.

« 1" (resistive wire ) 3He gas fube
« 10 bar3He + 2 bar Ar
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Gamma pulse shape

 Hard to give a typical signal

« Random gamma signail:
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Gamma pulse shape

« Look atreal signals

« 1" (resistive wire ) 3He gas fube
« 10 bar3He + 3 bar Ar
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Gamma pulse shape

 Hard to give a typical signal

« Random gamma signail:
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Gamma pulse shape

* |Introduction to pulse shape analysis

Pulse width
Gammas; FWHM )

- Low pulse height
- Wide

FWHM

Pulse height
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Gas gain

« “ldeal” pulse height spectrum:

Typical Difference Pulse Height Spectrum

12

e |  From Reuter Stokes brochure
8 1L (also shown by Jack Carpenter)

Counts (Arbitrary Units)

« Taken at low gas gain

20 40 60 80 100

Pulse Height (Channel Number)

» Resistive wire tubes require (much) higher gain
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Gas gain

« (Gas gain curve:

Pulse
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Applied voltage

« Reuter Stokes gas tube was operating in Proportional
Region
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Gas gain

« Limited Proportional Region

« Caused by space charge from ions

» Pulse height spectrum much broader when
operating in Limited Proportional Region
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Gas gain

« Resistive wire tube: higher gas gives better signal to
(electronic) noise ratio = better position resolution

Do we need a good pulse height spectrum?

* Not really, as long as gamma and background
radiation rejection is sufficient

» Resistive wire tubes usually operated in Limited
Proportional Region
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Gas gain

« How bad do the pulse height spectra get at high gaine

Pulse height spectra of Reuter Stokes 8mm &J LPSD, measured for various
anode wire high voltages.
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Gas gain

« For even higher voltages/gains

8000

anode wire high voltages.

Pulse height spectra of Reuter Stokes 8mm & LPSD, measured for various
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Gas gain

« For even higher voltages/gains

Pulse height spectra of Reuter Stokes 8mm & LPSD, measured for various
anode wire high voltages. Measured with low gain preamplifier

16000

14000

12000

10000

8000 —— 1200V
ﬂ —— 1100V
6000 I —— 1000V

N
2l A A

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Pulse height (V)

(@)
® Neufron detectors INSIS 24th July 2012 @

Counts




Gas gain

« For highest voltages/gains
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Pulse height spectra of Reuter Stokes 8mm & LPSD, measured for various
anode wire high voltages. Measured with low gain preamplifier
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« Spectra are worse under normal operating conditions
(shorter integration fime)
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Single ended: 1" &, 10 bar 3He, 3 bar Ar

Moderate gains

HT: 1300V

\\\\\\\\\

Gas gain

1350V

“Long” 4 us integration time
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Gas gain

« Resistive wire gas tube: 1" &, 10 bar 3He, 3 bar Ar
« High gains

 HI: 2375V 2425V
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« Integration time doesn’t effect spectrum

2375V spectrum still acceptable
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High rate

« 8mm & LPSD. Most likely type of detector to get hit
hard.

« Operating at 1450V

 Slit perpendicular to wire = all charge ends up at
same part of wire (high space charge density)

 MILAND detector specs: 100kHz/cm?
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—— Pulse height

High rate

« Pulse height spectra:
. Rcﬁe; 35kHz

wmmé?kHz
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High rate

« Gain drop at high rate same reason as “ugly”
spectra at high gain (slow ions).

« Gain drop has considerable impact on signal
processing.
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Gamma discrimination
2Bar vs 3Bar Argon: Pulse width (FWHM)

2Bar argon 3Bar argon

FWHM

Pulse height

« 3Bar: more overlap n-y in pulse height
Nn-y don’t merge in 2D = pulse shape discrimination
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Gamma discrimination

* Prefer 3Bar Ar because of shorter pulse. Still good n-y
discrimination.

« Have to consider rate effect.

« Seen from PH spec that gain drops quite sharply at
high rates = gamma discrimination criterion has to
stand high rates.
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Position resolution

* Measured with, resistive wire gas tube:
4mlong, 1" &, 10 bar 3He, 3 bar Ar

( N
S —

Cd mask with 13 slits

N

e Tests on Merlin beam line
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Position resolution

« Usually between 0.5% and 1% of tube length
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Misplacing neutrons

 Measured on LET with C60 sample at high rate

« Cylindrical geometry

« Vertical symmetry
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Misplacing neutrons

Workspace rebin
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Position along the tube

Misplacing neutrons

am—
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TOF
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Misplacing neutrons

 Different Z-scale:

Fiange
400
-
Misplaced neutrons
Intensity : ~2.5% of peak I
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Misplacing neutrons

« Suspicion:
“Ghost” counts caused by two neutrons absorbed very close in time.
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Misplacing neutrons

“Ghost” counts caused by two neutrons absorbed very close in time.

Ghost signal: Minute inflection in signal = 2 neutrons
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Width of signal might be good selection criterion

o
® Neutron detectors INSIS 24th July 2012 @



FWHM

Misplacing neutrons

Full Z- scale

Reduced upper limit

CCCCCC

Pulse height

Plot a bit stripy because FWHM is integer (number of samples)
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Misplacing neutrons

 Where do wide signals appear in TOF plote
FWHM plot. TOF plot.

» Spurious events in top of FWHM plot give ghosting.
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Misplacing neutrons
Where do narrow signals appear in TOF plote
FWHM plot. TOF plot.

» Spurious eventsin bottom of FWHM plot give tails in TOF plot.
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Misplacing neutrons
Problem: FWHM is hard to determine in real time in a LET ADC card.

(t-b)
Gaussian function: V(t)=Ae 2

2 2 _(t-by
a—v(t)= L Ll—(t_b) ]Ae 2?

ot? c? c2

2
Evaluate at peak (t=b): a_zv(b):

ot

b: peaking fime
FWHM = 2.35 ¢

A

C2

lICan estimate FWHM of signal at peak (provided that signal

Is Gaussian enough)

This “pseudo FWHM" is much easier to implement in ADC
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Misplacing neutrons
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Misplacing neutrons

Comparing both types of cuts

Real FWHM cuts Pseudo FWHM cuts
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Pseudo FWHM cut works well.
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Misplacing neutrons

2D plots are needed to get quantitative measure of bleeding reduction.

l X-cut: sum of these 4 columns

Counts:
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Misplacing neutrons

Y-cut. Sum of 22 (TOF) spectra
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—Without ghost suppression
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® Neutron detectors

Background: 100 cnfts
No reduction: 1950 cnfs
Real FWHM: 285 cnts

Pseudo FWHM: 380 cnts

Much better ghost
suppression here

. factor of 10 (real FWHM).

. factor of 6.6 (pseudo FWHM)
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Misplacing neutrons

X-cut. Summed 4 (position) spectra.
14000 ——Without ghost reduction 1000
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X-cut. Summed 4 (position) spectra.

—Without ghost reductfion |
—Real FWHM cuts
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» Ghost reduction hardly reduces counts in diffraction peak
» With ghost reduction: Peak to background ratio is ~200.
» Difference between real and pseudo FWM cut less obvious

than in Y-cut plots (why?)
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The end
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