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Why are we learning about other techniques?

Eddie the Eagle

Because being a heroic failure is not a business strategy!
(at least in science)
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Why are we learning about other techniques?

Synchrotron x-rays have evolved from parasitic to custom built
Brightness increase is orders of magnitude more than cost increase
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Why are we learning about other techniques?

Neutron scattering sources have also evolved from parasitic to custom built
Brightness increase matches cost increase
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Why neutrons? — five good reasons

Length and time scales
101" =10°m 1014 -10"s
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Why neutrons? — five good reasons

Penetration

Large samples, buried interfaces, extreme conditions, non-destructive
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Why neutrons? — five good reasons
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Magnetism

The neutron has a magnetic moment but no charge
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Why neutrons? — five good reasons

Precision

Weak interaction, simple interaction
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Why neutrons? — five good reasons

e !u!...
..nuc..l_ e
L ~
- Al WS

Sensitivity and selectivity

Isotopic substitution/contrast variation
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Synchrotrons NMR Computing Microscopy

Most research that use neutron scattering also uses
several complementary techniques
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Why neutrons?

Neutron scattering is part of the solution, it is not the solution
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Why neutrons?
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Neutron scattering 'simultaneously’ covers a broad (Q,w) range
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Why ‘not neutrons’?
Length Scale [A]
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It may not look so broad when viewed from a different perspective!
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Macroscopic property measurements
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X-ray diffraction
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X-ray diffraction is cheap, convenient and can do many, many things
Neutrons help for high Q, light atoms, similar Z atoms, magnetism
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Lesson ...

Don't say 'X-rays can’t see hydrogen’
Say 'neutrons can help see hydrogen better, when used together with X-rays’
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Raman scattering/Infrared spectroscopy

140

|

f

S(Q.0) (a.u.)

Transmittance (a.u.)

Hﬁ J“, i L-threonine

!
i J WATR R L R AL A A A e,
]V WY U A AT e

| . d4-L-threonine

-

m\i;ﬁu\w Ut N ]

0.0 T T T T T T T

T T
1200 1400 1600 1800 2000

200 400 600 800 1000
Ene transfer (cm’)
Virtual
energy A
states A A
Vibrational
energy states
4
3

0
Infrared Ra{fleigh Stokes  Anti-Stokes
a

absorption scattering Raman Raman
scattering scattering

Photons are cheap, convenient and can do many, many things
Neutrons give absolute intensiities with no selection rules
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Dynamic light scattering
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Figure 1: Schematic diagram of a conventional, 0.1 1 10 100 1 10 100 1000
90° dynarnic light scattering instrument.
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DLS exploits coherence, covers many decades in time
1-D information only, needs transparent samples
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Brillouin scattering, Inelastic X-ray scattering
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X-rays now 1-2 meV resolution; complementarity poorly exploited
Neutrons struggle at low Q because of kinematic restrictions
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NMR (1D, 2D, FT, MAS ...)
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NMR naturally provides many-body correlations
In all normal circumstances neutrons provide only 2-body correlations
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Electron diffraction/microscopy

Now close to 1 A resolution; can do liquids and glasses
Small samples, 'local’ structure
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Imaging

Growth Directionw

Crack tip

http://paleo.esrf.eu/

Sub-pm resolution; keV x-rays give high penetration
Neutrons only 50um, but better for light elements
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Resonant X-ray scattering
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Element and electron shell selective (e.g. orbital ordering)
But probably can't interpret without neutron data as well ...
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Coherent X-ray diffraction, FEL

Structure and stress distribution in single nano-particles; fs diffraction
But sometimes you need to look at more than one ...
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Computers

—————
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Simulation and modeling cover a very similar (r,t) range to neutrons
Neutron data can be calculated directly and easily from simulations
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Conclusions

Neutron scattering is (always going to be) an expensive technique
We must provide a quality product

Neutron instruments must exploit neutron strengths, not amplify
neutron weaknesses

e.g. absolute accuracy, signal to noise
Neutron instruments must exploit complementarity
e.g. molecular spectroscopy, computer simulation

Do not design or build a neutron instrument just because it's better
than another neutron instrument ...

... Which is usually the first thing do ...

(@)
® Other techniques INSIS July 161 2012 @



