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What we will cover 
q   Filter Spectrometers  – basics 
o Kinematics 
o DINS  
o The Resonance Filter Spectrometer  

² Filter Difference Technique (FD) 
² Double Difference Technique (DDT) 

o Resolution Components 
o Resonance Detector Spectrometer 

² Cycling Technique (CT) 

q  What do we measure and why 
q  Examples 
 
 



Filter Spectrometers  – 
basics 
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Filter spectrometers at eV energy 

 

•  Indirect geometry spectrometers 
•  Scattered neutron energy is selected by 

filters 
•  Incident neutron energy is determined by 

time-of-flight  
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Time of flight measurements with eV neutrons  
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How to select the final neutron energy in the 

1-150 eV range 

•  No choppers 
o  Neutrons are too fast 
 

•  No crystal analysers 
o  Neutrons have too short λ 	


Then … 
 

•  Nuclear resonances 
o  Several experimental 

configurations since 
1986……… 
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20 Å-1< Q < 250 Å-1 

 ω >1eV 

 

10-5 ps < t < 10-3 ps 

 

 0.1 Å < r < 0.2 Å 
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For a monoatomic system: 
 
 

Impulse Approximation regime : high q and ω 
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DINS (Deep Inelastic Neutron Scattering)  

Initial state 
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y is the West scaling variable: 
 

       recoil energy 
 
 
 
 or longitudinal momentum  distribution   
 

             NCP    
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  being the probability that an atom has a momentum component of magnitude 

y, along the direction of q. 
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At finite q  -    Final State Effects (FSE) 
  
Interactions among recoiling particle and the  
Surroundings à inter- and intramolecular  
interactions: 

v  Response function is q dependent --->F(y,q) 
v  At high q dominant effect comes from  

 the intramolecular interactions 
 

3. DINS 



Where and How do we 
make the measurement 
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Single atom short-scale dynamics	
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Inelastic scattering with eV neutrons 

The Resonance Filter Spectrometer (1986-2002) 
o Filter Difference technique (FD) 
o Double Difference Filter technique (FDD) 

 
Resonance Detector Spectrometer (from 2002) 

o Foil cycling technique (FC) 
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Filter Difference Technique 
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P.A. Seeger, A.D. Taylor and R. M. Brugger,  Nucl. Instr. Methods A 240, 98 (1985).  
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The Filter Difference Technique on eVS 
Spectrometer at ISIS 

J. M.F.Gunn et al. "A new approach to impulsive neutron scattering” Journal of 
Physics C  19, L835 (1986) 
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Count rate as a function of t 

probability that a neutron 
of energy E1 is detected 

q In the IA q and ω are no 
longer independent 
variables 

q Detectors at all angles give 
the same information for  
isotropic samples 
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Any scan in q,ω space which crosses the line ω=q2/(2M) 
gives the same information in isotropic sample	
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Resolution of an indirect geometry 
spectrometer  

q and ω  function of the experimental variables: 
 
 
 
 

uncertainties in experimental variables : 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

C. Andreani, G. Baciocco, J. Mayers, R. Holt, Nuclear Instruments and Methods A276, 297 (1989),  
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Scattering function F(y) for the 3He 
bcc solid sample. Data (full circles); 
best fit (purple line); resolution 
function FD (red line),  

Geometrical  Gaussian 
Energy  Gaussian & Lorentzian 

Single Difference (FD)  
 U resonances: 

 6.7eV, 20.7eV, 37eV.. 
FWHM (at 6.7 eV)  0.04 eV  
 
Doppler broadning  

 at RT   0.11 eV  
 at 70 K   0.06 eV 

 
 

RESOLUTION COMPONENTS 
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R2(E) = 1− T1(E)[ ]+
t1
t2
1− T2(E)[ ]

€ 

1− T1(E) = 1− exp[− Nt1σ(E)] ~ Nt1σ(E)

€ 

1− T2(E) = 1− exp[− Nt2σ(E)] ~ Nt2σ(E)

 
When σ(E) is small  
Lorentzian wings are removed 
 

 Resolution reduction of  
 ~2 for U and Au foils 

 

Scattering function F(y) for 
the 3He bcc solid sample. 
Data (full circles); best fit 
(purple line); resolution 
function FD (red line); 
simulated resolution 
function  FDD for VESUVIO 
(line). 

DOUBLE DIFFERENCE TECHNIQUE 
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DOUBLE DIFFERENCE TECHNIQUE 

Gold Foil U Foil 

1-e-Ntσ=Ntσ   as σ→ 0  
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Neutron Detector

Gamma Detector

Resonance Filter 
Spectrometer 

Resonance Detector 
Spectrometer: a photon 
counter detects the γ and X-
ray emission following γ 
resonant neutron absorption 
in a converter foil 

The Resonance Detector Spectrometer, 2002 
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DAE 

FOIL 

SAMPLE MODERATOR 

2Θ	


L1 

L2 
Detectors 

γ  detectors 

YAP scintillator 

Principles of Resonance Detector 
(RD) techniques  

RD 

RF 
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Gamma detector, why?: 

v Neutron detector very 
inefficient at  ~ 100 eV 

 
v Gamma detector 

efficiency independent of 
neutron energy 

The Resonance Detector Spectrometer, 2002 

238U and 197Au  

Experimental Tests 
at ISIS on YAP 
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•  YAP detector at 2º 

Ice at 270K, 238U 

The Resonance Detector Spectrometer, 2002 
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YAP gamma  
detectors 

6Li neutron 
detectors 

2006 
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VESUVIO INSTRUMENT 
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YAP has much better 
Peak to Background 
(P/B) ratio as 
compared to Li-glass.  
 
 
 

YAP: a comparison with Li-glass 

P/B ≅ 0.2 

P/B ≅ 0.6 

P/B ≅ 0.10 

P/B ≅ 0.04 

P/B ≅ 0.6 
P/B ≅ 0.35 
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YAP detectors give 
 
•  Energy Resolution FWHM reduced by ~2 
 

•  Better resolution peak shape 
 

•  100 times less counts on filter in and filter out 
measurements…thus less detector saturation at 
short times 

 

•  Similar count rates in the differenced spectra 
 

•  Larger differences between foil in and foil out 
measurements….therefore more stability over time. 

•  Order of magnitude improvement in measurement 
accuracy 
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Experimental Tests 
at ISIS in 2005 

The cycling removes drifts in 
detector efficiency with time, due 
for example to ambient 
temperature changes. 

The "raw” data is the difference 
between foil out and foil in data.  

E M Schoonveld, J. Mayers et al  Rev. Sci. Inst. 77 95103 (2006) 
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Cout=I0	
  A	
  

C=Cout-­‐Cin=	
  I1	
  [	
  1-­‐A2]	
  

Foil out 

Cin=I0	
  (1-­‐A)A	
  

Foil in 
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Foil out 

Rate at which scattered neutrons are 
incident on the detector after 
scattering by the sample. 

Probability that a neutron of energy E1 
is absorbed in the primary foil. 

Probability that the ray cascade is 
registered by YAP  

Foil in 

Background with the secondary 
foil in the "out” position. 

Background with the 
secondary foil in the ”in” 
position. 

Counts from the primary foil are reduced 
by this factor 

VESUVIO RAW DATA 
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Foil cycling technique 

Foil out  

Difference 

Foil in  

ZrH2   2θ= 67 Total Count Time =  5600 µ-A-hours 
Total neutron pulses = 7.82x106 
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•  Narrower peak 

•  Don’t loose too much efficiency 

•  Considerably smaller tails 

•  Even narrower peak with thinner cycling foil, but loose efficiency 

q  Resolution improvement 

q  Same thickness as analyser foil:  

Background subtraction  +  

 resolution improvement 

Simple theoretical calculation,
using 12.5 µm thick 197Au foils

TOF (µs)
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ga
m

m
a 

flu
x 

(A
.U

.)
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Foil cycling technique 
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1 mm lead

TOF (µs)
50 100 150 200 250 300 350 400 450 500

R
at

e 
(A

.U
.)
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Difference

 Background subtraction 

Measurements on VESUVIO, 2005 
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U-foil, 2 mm lead + 0.3 mm PE

TOF (µs)
50 100 150 200 250 300 350 400 450 500

R
at

e 
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.)
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0.0
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Background subtraction works very well 

All 3 main resonance 
peaks usable 

Need thicker foils for 
higher energy 
resonances 

Measurements on VESUVIO, 2005 
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Blue = intrinsic width of lead peak 
 
Black = measurement using Filter Single Difference technique 
 
Red = Foil Cycling technique 

Resolution improvement   FC  versus FD 
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YAP same resolution as Li-glass in double difference 

FWHM = 9.2 µs 

1 mm lead, Li-glass double difference
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Resolution improvement  FC versus FDD 
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Summary 
q  Current VESUVIO has order of magnitude better 

accuracy for proton measurements than 3 years ago 
due to installation of YAP detectors 

q  Current measurement accuracy of widths of proton 
momentum distributions is ~0.5%. 

  Future Developments 
q Gamma background reduction by moving shielding 

further from instrument 

q Residual background could be virtually eliminated by 
circular geometry for forward scattering detectors: 
Need detectors on rings 

q Rotate secondary foils keeping the foil scattering angle 
constant should almost eliminate gamma background 
effects 
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What do we measure 
and why 

 
Short-time single particle 

dynamics 
 
 
 nuclear quantum effects  
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Nuclear quantum effects 

Courtesy of Roberto Car (Princeton University)	


Not only the electrons but also the protons need  
quantum mechanical description 

The Proton Momentum Distribution n(p) in water probed by Neutron Compton 
Scattering (NCS) displays importance of nuclear quantum effects 
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Nuclear quantum effects 

  

� 

Δx Δp ≥  /2

p2

2M
>> 3
2
kBT

<EK> & n(p)  PES 
 

localization à excess of <EK> 

 

à  State of H in water dominated  
by ground state 
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46 

1. Classical systems 

2. Weak quantum systems 
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3. Molecular Systems 

Harmonic anisotropic lineshape: 
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Examples 
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49 

C. Andreani et al JCP. 115, 11243, (2001). 
C. Pantalei et al., PRL 100, 177801 (2009) 

Stable State: from CP to RT 
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Supercritical water 
50 

DINS Exp: C. Pantalei et al.  
PRL 100 177801 (2008): 

T= 673 K 
P=106 MPa 
r=0.7 g/cm3 

Theory: J. Morrone et al,  
JCP 126, 234504 (2007) 

n(p) harmonic- anisotropic lineshape :  

Ω
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Stable State: water CP 

NUS Chemistry Dept 5 07 2012 
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H quantum effects in ice	



D. Flammini, A. Petropaolo, R. Senesi, C. Andreani, F. McBride, A. Hodgson,  M. Adams, L. 
Lin, R. Car, J. Chem. Phys. 136, 024504 (2012) 

DINS at  T= 271 K 
2.5 eV≤ ω ≤ 30 eV 

ICE 
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(SDWAS)  February 10-12, 2012 – Seattle, WA  

M1 fit ------ 
<EK> =  156±2 meV 
 

M2 fit ___ 
<EK> =  154±2 meV 
 

*PICPMD ---- at 269 K  
<EK> = 143 ±2 meV 
 

*L. Lin, J. A. Morrone, R. Car and M.Parrinello, Phys. Rev. B 83, 220302(R) (2011). 

ICE 

DINS   at 271 K 
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JIA(y)  (blue solid line) 
M2   (black dots) 
 
*PICPMD (red dashed line) 

f(x) = [− log n(x) "] −Mx
β2

f(x) = −
Mx
β2

+
dy

0

∞

∫ y sin(
xy

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 dy
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∫ y cos(
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
)J IA(y)

ICE 

*L. Lin, J. A. Morrone, R. Car, and M. 
Parrinello, Phys.Rev. Lett. 105, 110602 
(2010). 
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Something we did not talk about 
 

Filter Spectrometers for IS at low q and high ω	


v What do we measure 
v Resolution components 
 

Data corrections Filter Spectrometers 
v Correction for Gamma background 
v Correction for multiple scattering 

Future development on VESUVIO 
 

Comparison of resolution of chopper and resonance filter 
spectrometers  at eV energies: complementary use of FS 
and Chopper spectrometers for n(p) 
 
NCS in polyatomic systems, N(P) and n(p)  
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Thank you! 


