McStas hands-on exercise: Reactor source diffractometer (and
optionally 3-axis spectrometer)

Peter Willendrup and Erik Knudsen, DTU Physics
Linda Udby, Niels Bohr Institute, University of Copenhagen

July 17, 2012

Postal adress:

Physics Department

Technical University of Denmark
Fysikvej 307

DK-2800 Kongens Lyngby, Denmark

email:
pkwi@fysik.dtu.dk,erkn@fysik.dtu.dk

Abstract

This document is a tutorial about McStas and neutron scattering for beginners.

The text below is also included as a chapter in the McStas manual.

1 Introduction

This tutorial has been written to help out novel users of McStas and neutron scattering instruments.
McStas is a software package for simulating neutron scattering experiments using a Monte Carlo ray-
tracing technique. This paper aims at helping the user to gain insight into basic neutron scattering as
well as neutron raytracing using the McStas software package [1],[2],[4].

1.1 Prerequisites
Needed knowledge and equipment to work through the tutorial is
e Undergraduate knowledge of mathematics and physics.

e A computer with McStas installed (refer to the McStas homepage [4] for details) or a bootable
McStas Ubuntu live DVD (installation to harddisk possible, but not required).

e This tutorial.

1.2 Goals and tasks

The goals and tasks of this tutorial are

e To teach you about the most basic neutron scattering.

e To let you understand some of the typical components in a neutron scattering instrument.
e To teach you basic usage of the McStas neutron simulation package.

e To let you create your first McStas instruments, a two axis diffractometer and a triple axis spec-
trometer.

e To teach you how to modify your instrument for a specific task.
e To help you learn to debug instruments.

e To help you aquire and analyze data from McStas simulations.

2 Basic neutron scattering
You may recall the Bragg law from your high school physics
n\ = 2dsin(6),

giving the scattering condition for a wave of wavelength \ against a series of lattice planes with lattice
spacing d, rotated the angle 0 off the lattice plane normal. n is an integer giving the spectral order of
the scattered wave. In neutron science one often refers to the scattering vector, K of a given reflection,
where

7l =2
k=|R=n—.
d
This gives us the scattering vector formulation of the Bragg law
Kk = 2ksin(0),
where k = 27“ The Bragg law / scattering condition is illustrated in Figure 1. Most of the neutron

d

Figure 1: Illustration of the Bragg Law.

processes we will study in this paper are elastic, meaning that the wavelength of the neutron is unaltered
by the process.

3 Basic understanding of instrument components

In the McStas formulation of a neutron scattering instrument, all objects apart from the neutron ray are
referred to as components. This includes for instance

e Source The exit of a neutron production facility, where neutron rays of certain velocities are
emitted into some portion of space.

e Monochromator (Idealized) crystal that is used to select neutrons of a single wavelength' X\o to
probe the sample with (monochromator) or to analyze with (analyzer).

e Sample An object altering the neutron physical properties in some sense, examples used here are:

— Vanadium. Scatters incoming neutron rays incoherently.

— PowderN. Can be thought of as a large number of crystals, each scattering neutron rays ac-
cording to Braggs law, thereby producing N concentric Debye Scherrer cones. This sample also
has the posibility of adding inchoherent, eleastically scattered neutron rays.

e Monitors Objects monitoring or registering neutron ray characteristics. In the exercises below are
used different types of detectors or monitors:

— Monitor. Single monitor, detecting the number of neutrons flying through a plane. (User
defined opening size).

— PSD_monitor. Square monitor, detecting the number of neutron rays passing through a plane,
divided into pixels. Square regions of a plane. (User defined resolution and opening size).

— PSD_monitor_4PI. As PSD_monitor but shaped like a sphere.

— L_monitor. Wavelength monitor, measuring the different wavelengths of the passing neutron
rays. (L is for A).

— Monitor_nD. General monitor for detecting all sorts of physical properties of the neutron ray.
In our cases used with options:

* ’single’ - as PSD_monitor but only one small square.
x ’banana’ - as PSD_monitor but shaped like a curved, horizontal band.

e Collimators Devices controling the direction and divergence of the neutron ray.

— Collimator_linear A series of parallel absorbing neutron plates that limits the beam divergence.
Typical values are 6’ to 120’

More information on the McStas components is available by using the mcdoc program (You may need to
set the BROWSER system variable to your webbrowser of choice):

e mcdoc -s , Shows a html list of all the components
e mcdoc Monitor.comp , Shows the documentation for a given component
e mcdoc -M, brings up the McStas manual in PDF format

e mcdoc -c , brings up the McStas component manual in PDF format

4 Basic McStas

In short, the core of the McStas system is a precompiler. From a user-provided instrument description,
components are assembled into a single piece of ansi-c code. Using a compiler, e.g. gcc, the c code is
compiled into an executable program which can be run on your computer. Optionally, the program takes
input arguments to tune the setup of your instrument/simulation. This section will take you through a

1In reality, the monochromator selects a normal distribution of wavelegths around Ao, and perhaps higher orders as well
(n=2,3,... in Braggs law)

simple example instrument to teach you the basic instrument language of McStas. (Instrument filename
is vanadium_example.instr, can be loaded using the Neutron Site/Tutorial menu item of the mcgui,
see below). Please study carefully the instructive comments, marked by /* ... */ characters

/* The line below defines the ’name’ of our instrument */
/* Here, we have a single input parameter, ROT */
DEFINE INSTRUMENT vanadium_example (ROT=0)

/* The DECLARE section allows us to declare variables */
/* in c syntax. Here, coll_div (collimator divergence) */

/* is set to 60 arc minutes... */
DECLARE
yAS

double coll_div = 60;
YA
/* Here comes the TRACE section, where the actual */
/* instrument is defined.... */
TRACE

/* The Arm() class component defines reference points */
/* and directions in 3D space. Every component instancex*/

/* must have a unique name. Here, arm is used. This */
/* Arm() component is set to define the origin of our */
/* global coordinate system (AT (0,0,0) ABSOLUTE) */

COMPONENT arm = Arm() AT (0,0,0) ABSOLUTE

/* Next, we need some neutrons. Let’s place a neutron */
/* source. Refer to documentation of Source_flat to */
/* understand the different input parameters. */
/* The source component is placed RELATIVE to the arm */
/* component, meaning that modifying the position or */
/* orientation of the arm will also affect the source */
/* component (and other components after that one...) */
COMPONENT source = Source_simple(radius = 0.015, dist = 1,
xw=0.024, yh=0.015, E0=5, dE=0.2)
AT (0,0,0) RELATIVE arm

/* Here we have a collimator - placed to improve beam */
/* divergence. The component is placed at a distance */
/* RELATIVE to a previous component... */
COMPONENT collimator = Collimator_linear(len = 0.2,
divergence = coll_div, xwidth = 0.04, yheight=0.06)
AT (0, O, 0.4) RELATIVE arm

/* We also need something to ’shoot at’ - here a samplex*/
/* made from vanadium - an isotrope scatterer. Options */
/* are available to restrict the solid angle in which */

/* neutrons are emitted (no need to simulate neutrons */

/* that we know for sure will not reach the rest of */
/* instrument) . */
/* Other options for smart targeting are available - */
/* refer to component documentation for info. */

COMPONENT target = V_sample(thickness = 0.004, radius = 0.012,
yheight = 0.015, focus_r = 0, pack =1,
target_x = 0, target_y = 0, target_z =
AT (0,0,1) RELATIVE arm

1)

/* Here, a secondary arm - or reference point, placed */

/* on the sample position. The ROT parameter above */
/* defines rotation of this arm (and components */
/* relative to the arm) */

COMPONENT arm2 = Arm()
AT (0,0,0) RELATIVE target
ROTATED (0,ROT,0) relative arm

/* For data output, let us place a detector. This */
/* detector is not very realistic, since it is sphere */
/* shaped and has a 10 m radius, but has the advantage */

/* that EVERYTHING emitted from the sample will be */
/* picked up. Notice that this component changes */
/* orientation with the ROT input parameter of the */
/* instrument. */

COMPONENT PSD_4pi = PSD_monitor_4PI(radius=10, nx=101, ny=51,
filename="vanadium.psd")
AT (0,0,0) RELATIVE arm2

END

Enlightened by the above example, you are probably now ready to learn a few more important details
and tips about McStas.

e Neutron representation: A neutron ’history’ or package is an entity representing a large number
of neutrons. It has the following physical properties:

Spatial coordinates, & or x,y, 2.

Velocity components, ¥ or vz, vy, V..
— Spin components, §or s;, Sy, S-.

— Time, t.

— Neutron weight factor, p.

e Neutron histories/Intensities: McStas simulates neutron histories rather than direct neutron
counts, i.e. when a Monte Carlo choice is made in a given component (e.g. a random number
is generated to decide a new direction of the neutron ray), the neutron weight factor is adjusted
accordingly. As you may have guessed already, the weight factor is the average number of of observed
neutrons of a given behaviour. The transition to direct neutron intensites is made by adjusting the
initial neutron weight of the source component, so that the sum of all simulated weight factors
equals the absolute intensity of neutrons emitted in one second. This means that the intensity of
the neutron beam at a given position is the initial neutron weight multiplied by the product of all
the Monte Carlo weight factors occuring from the source to the given position. When observing
McStas output, [is the intensity, not V.

3D space: The 3D space in which the instrument is defined, usually has a single component which
is placed ABSOLUTElIy in space, e.g. at (0,0,0). All other components can be placed RELATIVE
to this component.

Changing coordinate system: Each component has its own local coordinate system. As the
neutron travels from one component to the other, the local component coordinate system changes.
The definition is that z is the direction toward the next component, and that the y direction is
vertical. Our coordinate system is right-handed, making x horisontal and pointing left, looking in
the direction of z.

Component order matters! It is important to understand that McStas is component order
dependent. The basic idea is to follow the neutron as it travels from one component to the next
in the instument description. This means that if you place one component geometrically before
another component, but orderly after the other component, neutrons may never reach your first’
component. This means that some designs can be difficult to achieve, though generally a solution
can be found.

Use Arm()’s! The Arm() component is very good for defining changed orientation of the instru-
ment, e.g. for axis turning points etc. Placing many Arm()’s will improve future flexibility of your
instrument.

Use PSD_monitor()’s! The PSD_monitor() component is a Position Sensitive Detector. This
component can be used to image the shape of your beam as it travels through the instrument. This
is very useful for debugging purposes. Other monitors, for instance wavelength monitors can also
be useful.

In the McStas manual, available by clicking here if you are using an internet browser to view this
document, description of usage of the different McStas tools is printed. The main McStas programs are

mcstas - Core application.

mcgui - Main graphical user interface.
medisplay - Ray trace / debugging application.
meplot - Data / display application.

mcdoc - Documentation application.

Here are a few hints on using the tools:

5

To start mcgui, execute mcgui in a terminal window (mcgui.pl on Windows).

To handle instrument files (opening, editing, compiling), use File menu of mcgui.

To simulate and plot data, use the Simulation menu of mcgui.

To use the distributed example McStas instruments, use the Neutron Site menu of mcgui.

For further help on usage, use the items of the mcgui menu of Help menu or read the chapter
Running McStas of the McStas manual [2].

Exercises

Throughout the rest of this paper, you will have to do the work! Through a series of small exercises,
you will set up and use two simple neutron scattering instruments: a diffractometer and a triple axis
spectrometer. To get an idea of what your final instrument might look like, see the sample instrument
portrayed in Figure 2.

In subsection 5.7 is shown what the final exercise instrument file might look like. It is advisable to
only use this file when stuck as learning by doing (yourself) is preferable to copying.

y/[m]

Single detector

PSD and A monitors

1
Analyzer Xtal
0.5
PSD and A monitors
0
-0.5
PSD and A mo
1 Monochromator Xtal

Neutron source

x/[m] -1 z/[m]
Figure 2: Illustration of a triple axis diffractometer.

5.1 Exercise: Source and PSD

1. Start the GUI (Graphical User Interface) by writing the command mcgui in a terminal. To open a
terminal in Ubuntu, go to Applications — Accessories — Terminal or press Ctrl4+Alt+t.

2. Click the Edit/New button on the GUL

3. Insert a template instrument through the menu Insert — Instrument template or by pressing Alt-+i
twice. Set up an instrument, consisting only of an arm (keep the arm 'Progress_bar’ that is already in
the file), a source (Source_-Maxwell_3) and two monitors (a PSD_monitor and an L_monitor). Insert
the source at (0,0,0) relative to the origin by placing the curser at the right location (after the
"Progress_bar’) in the instrument file and going to the ’Insert’ menu to select the source. Likewise,
place the monitors at (0,0,1) relative to the origin. As you input each component you should
read the their documentation to find the needed input parameters. The component library can be
accessed by clicking the Help (McDoc) button on McGui and choosing ’Component library index’.

5.2

This will open up an webpage with a list of all the components.

For the source we will help you out. Try

COMPONENT source = Source_Maxwell_3(
size = 0.1, 1_low = 0.1, 1_high = 10, dist = 1, xw = 0.1,
yh = 0.1, T1 = 50, T2=50, T3=50, Il=lel4, I2=0, I3=0)

AT (0, O, 0) RELATIVE Origin

Read the Source_Maxwell_3 documents using McDoc to understand the suggested parameters.

Save your instrument file with a meaningful name and extension (such as "TAStutorial.instr’). When
the file is saved for the first time, McGui is automatically given the name of the instrument file.
Run a simulation by pressing the Run button in McGui. After compiling the instrument file, McGui
will open a window with questions on the simulation such as neutron count, i.e. how many times
a neutron ray is simulated. For now, simply give the name of the directory to store you simulation
run in and press the Start button. The instrument simulation will run and its output will be given
in the McGui window. When the simulation finishes, plot the results by pressing the Plot button.
You should now have two plots, one from the PSD monitor and one from the wavelength monitor.
If either or both of the monitors have detected no neutrons, start looking for mistakes in your
instrument file.

Narrow down the interval of wavelengths emitted from the source to e.g. 1.low=3.999 and 1_high=4.001.

You do that by changing the value in the component in the instrument file either by writing the
values directly or by making varible input by writing i.e l_low=Llow and putting the variable Llow
parameter in the DEFINE INSTRUMENT section like this:

DEFINE INSTRUMENT TAStutorial(Llow=0.1, Lhigh=15)

Rerun your simulation to check the effect, you will be prompted for the value of the input param-
eters. Reset the wavelength interval to [0.1 15] A.

Estimate the solid angle covered by your PSD. Try to understand the neutron intensity as illustrated
by the plot of the registered events in the PSD in the two previous runs. Try running the simulation
with half or double the number of neutron rays. Try also to vary the source focus area and to
understand what you observe.

Exercise: Insert a monochromator

. Keep your current components but focus the source on tracing only at a 2x2cm? area 2 m after

the source.

In the following we will insert a monochromator component at this position and a new set of PSD
and L_monitor after the monochromator. In order to be able to rotate the monochromator it is
helpful to insert two Arm() components a the rotation point at the monochromator. One of the
Arm’s is used to rotate the monochromator, while the other rotates the instrument components
that follow.

Insert the two new arms at (0,0,2) relative to the Origin. Put the Monochromator_flat component
(use the component library index to get the needed parameters) at (0,0,0) relative to the monochro-
mator arm. Also, add two new input parameters of your instrument, which we will call OMM (/)
and TTM (2657). These will define the angles of rotation at the monochromator as portrayed in
Figure 3.

Given A = 4A, and knowing that for the monochromator x = 1.8734 A1 (Pyrolytic Graphite
(002) reflection), use Bragg’s law to determine the correct Bragg angle (i.e. OMM/TTM) of the
monochromator. Add the OMM and TTM input parameters to the DEFINE line at the beginning

Incoming neutrons

Outgoing neutrons

Figure 3: Illustration of the monochromator orientation.

of the instrument file and give them the defailt values you just calculated. Rotate the two arm
components by OMM and TTM around the y-axis.

. Place the two ’samplesized’ monitors 1.5 m after the monochromator relative to the TTM Arm.

Give the wavelength monitor 1000 channels

. Do a scan of OMM a couple of degrees to each side of the calculated Bragg value to verify the

finding, while keeping TTM fixed. This is done by replacing the fixed value of OMM in the Run
Simulation window with two numbers separated by a comma, e.g. 20,25. These numbers represent
the minimum and maximum values of OMM. A number of steps must also be given and this is done
by changing the # steps value from 1 to e.g. 20. Check the position of the peak on the PSD and
the wavelength on the L_monitor.

What should & be set to to get the monochromator reflection at exactly OMM= 45° (TTM= 90°)?
Adjust x for the monochromator and verify the calculation by a scan. Check the wavelength
distribution by plotting the the central scanpoint.

. Determine the Bragg angle to scatter second order (n = 2) neutrons from the x just calculated

and verify it by scanning OMM. Set OMM to this value. Perform the simulation and check the
wavelength distribution. Comment.

Before you go on, change the minimum and maximum wavelengths of the source to a suitably
narrow interval around the wavelength which you record at the sample position. There is no need
to produce neutron rays that will not be scattered at the monochromator.

Exercise: Insert a sample

1. Now, insert a V_sample() component just after the last PSD_monitor and L_monitor and a Beam-

stop component 0.2 m after the sample. The V_sample() component simulates a Vanadium sample.
Such a sample scatters incoherently, i.e. in all directions. At the same position as the sample, in-
sert a PSD_monitor_4PI component of radius 0.5 m. Read the documentation for details on input
parameters. Run a simulation. Notice the number of hits.

5.4
L.

Exercise: Insert a sample with two powder lines

Next, let us insert something more interesting. Remove the V_sample and PSD_monitor_4PI and
insert a PowderN component with the following parameters:

COMPONENT sample = PowderN(radius=0.01,h=0.01, d_phi=0.1, pack=0.5,
DW=0.9, frac=0.5, reflections="mylist.dat",
Vc=3.86%*3.86%11.82, sigma_abs=0, sigma_inc=2, barns=1)
AT (0, O, 1.5) RELATIVE arm2

You should also create a list of reflections and save it as mylist.dat. The list should have the
following contents:

column_j 3 multiplicity ’j’

column_gq 1 Scattering vector modulus [Angs~-1]
column_F2 2 Scattering factor |F"2| in [barns]
2 1000 8

2.6 1000 4

Insert a banana shaped detector:

COMPONENT BananaDetector = Monitor_nD(
xwidth=1.5, yheight = 0.09,
options="banana, theta limits [-55 -35] bins=360, file =detector.dat")
AT (0,0,0) RELATIVE sample

and make sure that the previously inserted beamstop is before the banana detector in the component
list. Test that Bragg peak neutrons reach the detector by running a simulation.

Afterwards, choose trace instead of simulate in the Run simulation window and see the instrument,
you have created. To see only the trace of the neutrons, which hit the detector, select the detector
component in the list given in the Inspect component box. Also, insert the following after the
sample component:

EXTEND %{
if (!SCATTERED) ABSORB;
%t

This will insert a command in c-language into the compiled instrument file. The command says
that if the simulated neutron does not scatter at the sample, it is absorbed. This removes the direct
beam and should be used with caution. You can now remove the Beamstop component. You can
also insert the same statement after the monochromator.

Exercise: Insert a real sample

1. Instead of mylist.dat use Na2Ca3A12F14.laz. Change the limits of the banana detector to [-130

-10] and change the sample component to read:

COMPONENT sample = PowderN(
reflections = "Na2Ca3A12F14.laz", d_phi = 0.1, radius = 0.004,
h =0.03, DW = 0.9, barns = 1, pack = 0.7, frac = 0, tfrac=0)
AT (0, 0, 1.5) RELATIVE arm?2

Make a simulation to check that a nice powder pattern is observed. If it is time for a coffee break,
close the plot from the quick run and instead do a long simulation, e.g. 20 million neutron rays,
and have coffee.

10

2.

If you don’t have time for coffee, you can enhance the statistics by using SPLIT at the sample
component since there are many MC choices there:

SPLIT 10 COMPONENT sample = PowderN(
reflections = "Na2Ca3A12F14.laz", d_phi = 0.1, radius = 0.004,
h =0.03, DW = 0.9, barns = 1, pack = 0.7, frac = 0, tfrac=0)
AT (0, O, 1.5) RELATIVE arm2

Comment on the pattern as function of scattering angle!

. Keeping what you learned at the other lectures in mind, how could you improve the g-resolution?

Think about wavelength and divergence of the beam and play with your instrument to make it
better.

Optional Exercise: Insert an analyzer

1. Comment out the banana detector and beamstop with /* and */ before and after the components,

respectively. We are in stead going to put a single detector of an appropriate size at the perimeter
location of the bananadetector.

. Add an arm at the sample and an angle to rotate the part of the instrument located after the

sample, e.g. TT (Two ©). Put a single detector (use e.g. a PSD) at a location corresponding
to the radius of the bananadetector but relative to the TT arm. Look at your results from the
last simulation to determine an approximate scan range for the sample scattering angle (TT), e.g.
-25,-35, which will make a scan through some powderlines.

. Between sample and detector, set up an analyser crystal by copying and modifying your monochro-

mator component. Add new arms and angles: OMA and TTA; A is for Analyzer. Adjust the
analyser to Bragg condition for the chosen wavelength and make sure that the analyser crystal
rotates accordingly to keep the Bragg condition. Re-scan T'T and notice the difference to the scan
performed in the previous task. Try also scanning around -TT and notice the difference to the
other scan. Can you explain the difference? Contrary to a real experiment you can take a look at
the energy which is hitting the detector - try that by using an appropriate monitor.

5.7 Example instrument file

/***

* McStas instrument definition URL=http://www.mcstas.org
*

* Instrument: TAStutorial (rename also the example and DEFINE lines below)
*

* YIdentification

* Written by: udby@fys.ku.dk, pkwi@dtu.fysik.dk (email)

* Date: 16/7-2012

* Origin: University of Copenhagen/ DTU Physics

* Release: McStas CVS-080208

* Version: 0.2

* %INSTRUMENT_SITE: Institution_name_as_a_single word

*

* Instrument short description

*

* YDescription

11

¥R X X X K K K K X X X X X X K K K X X X X X X X X ¥ X X*

k%

/*
DE
st

/*
/*
DE
w{

Y

/*
/*
IN
w{

Instrument longer description (type, elements, usage...)
Example: mcrun TAStutorial.instr <parameters=values>

/%Parameters

FOCUSW: [m] Focus width of the source

FOCUSH: [m] Focus height of the source

DIST: [m] Focus dist of the source

Llow: [Angs] Lower boundary of traced rays

Lhigh: [Angs] Higher boundary of traced rays

OMM: [deg] Monochromator horizontal rotation angle

TTM: [deg] Monochromator scattering angle

KAPPAMONO: [Angs-1] Monochromator scattering vector

SAMPLE: [1] Choice of 1) Vanadium, 2) 2-line powder, 3) PowderN
SAMPLEFILE: [str] Input reflection list for PowderN

BEAMSTOP: [1] If set, beamstop is in

SINGLEDETECTOR: [1] If set, single detector is used, if not banana detector with 360 bins is simulated
TT: [deg] Rotation angle of second axis angle for single detector
OM: [deg] Sample rotation angle

TTA: [deg] Analyser scattering angle

THETAMIN/MAX: [deg] Min/Max angle to be recorded by banana detector
DSM: [m] Distance between Source and Monochromator

DMS: [m] Distance between Monochromator and Sample

DSA: [m] Distance between Sample and Analyser

DAD: [m] Distance between Analyser and Single Detector

ALink

A reference/HTML link for more information

0,
%End
stk sk ok sk ks ks ko ko ko ko sk ok sk sk sk sk ks ko ko ko sk ok sk sk sk sk sk ko ko ko sk sk sk sk sk sk sk sk ko ko ko sk sk sk ok /

Change name of instrument and input parameters with default values */
FINE INSTRUMENT TAStutorial(FOCUSW=0.1,FOCUSH=0.1,DIST=1,Llow=0.1, Lhigh=10,0MM=36.607,TTM=73.214,KAPPAM

ring SAMPLEFILE="Na2Ca3A12F14.laz",SINGLEDETECTOR=0,TT=0,0M=0,TTA=0,THETAMIN=-130,THETAMAX=-10, DSM=2, L
The DECLARE section allows us to declare variables or small */

functions in C syntax. These may be used in the whole instrument. */
CLARE

char Opts[256];

The INITIALIZE section is executed when the simulation starts */

(C code). You may use them as component parameter values. x/
ITIALIZE

if (SINGLEDETECTOR==0) {

sprintf (Opts, "banana theta limits [%g %g] bins=360 file=detector.dat",THETAMIN,THETAMAX);
} else {

sprintf (Opts,"Using single detector");

12

¥

/* Here comes the TRACE section, where the actual */
/* instrument is defined as a sequence of components. */
TRACE

/* The Arm() class component defines reference points and orientations
/* in 3D space. Every component instance must have a unique name. Here,
/* Origin is used. This Arm() component is set to define the origin of
/* our global coordinate system (AT (0,0,0) ABSOLUTE). It may be used
/* for further RELATIVE reference, Other useful keywords are : ROTATED
/* EXTEND GROUP PREVIOUS. Also think about adding a neutron source !
/* Progress_bar is an Arm displaying simulation progress.
COMPONENT Origin = Progress_bar()

AT (0,0,0) ABSOLUTE

COMPONENT Source = Source_Maxwell_3(
size = 0.1, 1_low = Llow, 1_high = Lhigh, dist = DIST, xw = FOCUSW,
yh = FOCUSH, T1 = 50, T2 = 50, T3 = 50, Il = 1lel4, I2 = 0,
I3 = 0)
AT (0, O, 0) RELATIVE Origin

COMPONENT PSD_1im = PSD_monitor(
filename = "PSD_1m", restore_neutron = 1, xwidth = 0.1,
yheight = 0.1)
AT (0, 0, 1) RELATIVE Origin

COMPONENT Lmon_1im = L_monitor(
filename = "Lmon_1m", restore_neutron = 1, xwidth = 0.1,
yheight = 0.1, Lmin = Llow*0.9, Lmax = Lhigh*1.1, nchan=1000)
AT (0, O, 1) RELATIVE Origin

COMPONENT A1 = Arm(
)
AT (0, O, DSM) RELATIVE Source
ROTATED (O, OMM, O) RELATIVE Source

COMPONENT A2 = Arm(
)
AT (0, 0, DSM) RELATIVE Source
ROTATED (0, TTM, O) RELATIVE Source

COMPONENT Mono = Monochromator_flat (
width = 0.1, height = 0.1,Q=KAPPAMONO)

13

*/
*/
*/
*/
*/
*/
*/

AT (0, 0, 0) RELATIVE A1
EXTEND %{
if (!SCATTERED) ABSORB;
Y

COMPONENT PSD_samplepos = PSD_monitor(
filename = "PSD_samplepos", restore_neutron = 1, xwidth = 0.01,
yheight = 0.01)
AT (0, O, DSM) RELATIVE A2

COMPONENT Lmon_samplepos = L_monitor(
filename = "Lmon_samplepos", restore_neutron = 1, xwidth = 0.01,
yheight = 0.01, Lmin = Llow*0.9 , Lmax = Lhigh*1.1, nchan=1000)
AT (0, O, DSM) RELATIVE A2

COMPONENT A3 = Arm(
)
AT (0, O, DMS) RELATIVE A2
ROTATED (O, OM, 0) RELATIVE A2

COMPONENT A4 = Arm(
)
AT (0, O, DMS) RELATIVE A2
ROTATED (O, TT, 0) RELATIVE A2

COMPONENT Vsample = V_sample(
radius_i = 0.003, radius_o = 0.005, h = 0.01)
WHEN (SAMPLE==1) AT (0, O, DMS) RELATIVE A2

SPLIT 10 COMPONENT sample2line = PowderN(radius=0.01,h=0.01, d_phi=0.1, pack=0.5,
DW=0.9, frac=0.5, reflections="mylist.dat",
Vc=3.86%3.86%11.82, sigma_abs=0, sigma_inc=2, barns=1)

WHEN (SAMPLE==2) AT (0, O, DMS) RELATIVE A2

// EXTEND %{

// if (!SCATTERED) ABSORB;

/7 h}

SPLIT 10 COMPONENT sample = PowderN(
reflections = SAMPLEFILE, d_phi = 0.1, radius = 0.004,
h =0.01, DW = 0.9, barns = 1, pack = 0.7, frac = 0, tfrac=0)
WHEN (SAMPLE==3) AT (0, O, DMS) RELATIVE A2
EXTEND %{
if (mcipSAMPLE==3) {
if (!SCATTERED) ABSORB;
}
W

COMPONENT Beamstop = Beamstop(
radius = 0.05)

14

WHEN (BEAMSTOP) AT (0, O, 1.7) RELATIVE A2

COMPONENT PSD_4pi = PSD_monitor_4PI(
filename = "PSD_4pi", restore_neutron = 1, radius = 0.5)
AT (0, O, DMS) RELATIVE A2

COMPONENT BananaDetector = Monitor_nD(
xwidth=1.5, yheight = 0.09,
options=0pts,restore_neutron=1)

WHEN (!SINGLEDETECTOR) AT (0,0,DMS) RELATIVE A2

COMPONENT A5 = Arm(
)
AT (0, O, DSA) RELATIVE A4
ROTATED (O, TTA/2, 0) RELATIVE A4

COMPONENT A6 = Arm(
)
AT (0, O, DSA) RELATIVE A4
ROTATED (O, TTA, 0) RELATIVE A4

COMPONENT Ana = Monochromator_flat (
width = 0.01, height = 0.1,Q=KAPPAMONO)
AT (0, O, 0) RELATIVE A5

COMPONENT PSD_detector = PSD_monitor(
filename = "PSD_detector", restore_neutron = 1, xwidth = 0.01,
yheight = 0.1)

WHEN (SINGLEDETECTOR) AT (0, O, DAD) RELATIVE A6

COMPONENT Lmon_detector = L_monitor(
filename = "Lmon_detector", restore_neutron = 1, xwidth = 0.01,
yheight = 0.01, Lmin = Llow#0.9 , Lmax = Lhigh*1.1, nchan=1000)
WHEN (SINGLEDETECTOR) AT (0, O, DAD) RELATIVE A6

/* This section is executed when the simulation ends (C code). Other
/* optional sections are : SAVE

FINALLY

#{

ht

/* The END token marks the instrument definition end */

END

15

*/
*/

6 Suffix

Well done, you have come to the end of the McStas tutorial. Hopefully, most of the goals of the tutorials
have been fulfilled. Otherwise, feel free to contact the authors of this paper or the McStas users mailinglist
for further help.

References

[1] K. Lefmann and K. Nielsen: McStas, a general software package for neutron ray-tracing simulations,
Neutron News, 10 pp. 20-23, 1999

[2] P. Willendrup, E. Farhi K. Lefmann et. al.: User and Programmers Guide to the Neutron Ray-
Tracing Package McStas, Version 1.11, Risg National Laboratory, Roskilde, Denmark, January 2007

[3] P. Willendrup, E. Farhi K. Lefmann et. al.: Component Manual for the Neutron Ray-Tracing
Package McStas, Version 1.11, Risg National Laboratory, Roskilde, Denmark, January 2007

[4] McStas homepage: http://www.mcstas.org

16

