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What is a ceramic membrane?
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A dense ceramic membrane that supports ionic transport by 
(vacancy or interstitial) diffusion.  A mixed conducting 
membrane also supports electronic transport

Oxygen-transport ceramic 
membranes are perhaps the 
most common in energy 
production and utilization 
technologies.
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Outline of the Talk

• The roles of ceramic membranes in present and 
emerging energy technologies 

• Materials requirements that define crosscutting 
research opportunities

• Recent examples of neutron diffraction studies of 
ceramic membranes

• Research opportunities
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Natural Gas Conversion to Hydrogen, Methanol, 
Hydrocarbons
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• 25-40 TCF natural gas in Alaska, 1700 TCF in Russia 
• Partial oxidation and steam reforming
• ~60% capital expense is in syngas generation
• 2500MT/day MeOH, 1600MT/day O2
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A Ceramic Membrane Reactor for Conversion 
of Natural Gas to Syngas

Ceramic membrane requirements:
•Oxygen ionic transport
•Electronic transport
•Chemical and thermal stability
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Water Separation Using a Ceramic Membrane

H2O ⇔ H2 +
1
2

O2

The amounts of hydrogen and oxygen in equilibrium with water are very 
small, even at high temperatures, but significant amounts of hydrogen or 
oxygen can be generated at modest temperatures if the reaction is shifted 
towards water dissociation by removing either hydrogen or oxygen using a 
mixed-conducting membrane.
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O2- Balchandran et al. have 
achieved H production of 
~10cm3(STP)/min-cm2 at 
900°C.
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Solid Oxide Fuel Cells
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Ceramic membrane requirements:
Electrolyte
•Ionic transport
•Electrically insulating
Electrodes
•Ionic transport
•Electronic transport

Both bulk and surface properties 
are important.
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The SOFC Cathode
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Oxygen 
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Synthesis of fine grain 
electrodes:
• Increase TPB length
• Increase mass exchange

at grain boundaries
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Crosscutting Research Opportunities

• Understand bulk and surface ionic transport in 
insulating and electronically-conducting materials 
and learn to tailor the properties of materials

• Achieve chemical and thermal stability and 
surface catalytic properties while maintaining the 
required transport

Example -- a specific challenge:
Achieve good oxygen ionic and electronic transport in 
a ceramic membrane material at 500-600° C.
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What can be done with neutron scattering?

•Structure
•Defect location, concentration, and ordering
•Phase transitions vs. chemical composition, temperature,  & 

oxygen partial pressure
•Detailed information about the synthesis chemistry from in 

situ diffraction studies
•Phase separation & decomposition
•Phase behavior in in situ dynamic ion-conducting environments
•Vibration and diffusion properties of the mobile species

In situ studies under conditions that simulate the ceramic 
membrane operating environment are especially important because 
they provide information that cannot be obtained in any other way.
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Example: The SFC-2 Ceramic Membrane

In previous ANL/Amoco work:
•A material called SFC-2 achieved 

98% methane to syngas conversion 
efficiency in tests up to 1000 hr.

•However, the phase composition 
and crystal structure of this 
material was not known.
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From neutron powder diffraction, we learned:

SFC-2 (Sr2Fe2CoO6+δ) is a mixed-phase compound:

20-30% Sr(Fe1-xCox)O3-δ
perovskite

50-70% Sr2(Fe1-xCox)3O6+δ 2-3-6 phase

5-15% (Co1-xFex)O rock salt
(Co1-xFex)3O4 spinel

Relative weight fractions are determined by synthesis  and 
operating conditions.



Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of EnergyNeutrons and Energy for the Future, Washington, DC, June 4-5, 2004

Sr-Fe-Co Composition Diagram
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Ionic conductivity vs. ionic transference number for the 
active components of SFC-2

An ideal mixed-conducting 
membrane exhibits:

• High ionic conductivity
• ti= σionic/σtotal ≤ 0.5

850°C, 
various p(O2)
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The 2-3-6 phase is a 
layered compound that 
supports oxygen ionic 
conductivity and is 
mechanically and chemically 
stable in the reactor 
environment.  It has poor 
electronic conductivity.

The 2-3-6 phase: A new layered ionic conductor
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Volume of perovskite phases vs. oxygen content
(large changes lead to mechanical instability)
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The perovskite phase 
has good electronic 
conductivity, but is
mechanically unstable in 
the reactor environment
because of large changes 
in oxygen content as a 
function of external
p(O2), which affect the 
cell volume.
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In Situ Neutron Powder Diffraction Under 
Dynamic Conditions: What Can We Learn?
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Furnace at the IPNS for Dynamic In Situ Studies of 
Ceramic Membranes (J. W. Richardson, E. Maxey, & Y. Li)
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Example of TOF Neutron Powder Diffraction Data 
from the In Situ Furnace 

LSFC ceramic membrane
2 phases
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In Situ Phase Behavior of SFC-2 Three-Phase 
Ceramic Membrane vs. Time While Changing p(O2)
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In situ NPD Data for LSFC Ceramic Membrane under 
Static and Dynamic Conditions
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In situ NPD Data for LSFC Ceramic Membrane under 
Static and Dynamic Conditions
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In situ NPD Data for LSFC Ceramic Membrane under 
Static and Dynamic Conditions
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Summary

• Ceramic membranes are widely used in existing and emerging 
energy technologies.

• Because of the large costs involved, even incremental 
improvements in performance are important.

• Breakthroughs in ceramic membrane materials (e.g., higher 
transport at lower temperature) could have dramatic impact.

• Neutron scattering (especially in situ studies) provides 
unique information about both bulk and surface properties.

• These techniques need to be extended to other types of 
ceramic membranes -- e.g., hydrogen or CO2 transport 
membranes.


