
 D.Curreli  
Dec 18, 2014, ORNL

dcurreli@illinois.edu

Ion Kinetics at the Plasma Material 
Interface in Oblique Magnetic Fields

Davide Curreli 
!

Department of Nuclear, Plasma, and Radiological Engineering 
University of Illinois at Urbana Champaign 

!
dcurreli@illinois.edu  

1

mailto:dcurreli@illinois.edu
mailto:dcurreli@illinois.edu


 D.Curreli  
Dec 18, 2014, ORNL

dcurreli@illinois.edu

2

* Wirth, Nordlund, Whyte, and Xu, Materials Research Society Bulletin 36 (2011) 216-222

Multiscale, interlinked PSI phenomena
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Multiscale, interlinked PSI phenomena
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Feedback Loop of  
Plasma Sheath & Material Release

4

E,θ distributions 
at the wall 

PLASMA SHEATH 
STRUCTURE 

PLASMA PARTICLES 
ACCELERATED BY THE 

ExB FIELDS 

 THROUGH THE SHEATH

RELEASE OF PARTICLES 
FROM THE WALL  

(DEPENDING ON E,θ)
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Outline
• Ion distribution functions at the material wall of 

a magnetized plasma 
• Fluid model 
• PIC model 

• Wall response 
• BCA methods for material properties  
• Development of Fractal-TRIDYN 

• Coupling methodologies with fluid-kinetic codes 
• SOLPS, EMC3, EIRENE 
• Using only the “relevant” information

5

mailto:dcurreli@illinois.edu


 D.Curreli  
Dec 18, 2014, ORNL

dcurreli@illinois.edu

A Simple Question
6

What is the energy and the angle of plasma ions 
at the boundary of a magnetized plasma?
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Release of Material Particles (e.g. Y, δe) and wall reflection 

coefficients depend on f(E,θ) @ wall. E.g.: SY(E,θ) 
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Classical picture of the Magnetized 
Plasma Sheath 

Ion Energy-Angle !
Distribution Function
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Marginal distributions 
derived from f(E,θ)
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Models of the Magnetized Sheath
9

Authors (list of selected works) Fluid Model Kinetic Model
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x

P. C. Stangeby, PoP 2, 702 (1995) x
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S. Devaux and G. Manfredi, Phys. Plasmas 13, 083504 (2006)!
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Riemann Fluid Model including fluid 
Collisions and Ionization

10

1. Continuity  

2. Momentum 

3. Isothermal ideal-gas EoS 

4. Quasi-neutrality 

5. Boltzmann electrons 

Dimensionless variables

(+B.C.)↵ =
⇡

2
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Typical profiles from Fluid Model
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V|| becomes sonic at MPE

Plasma assumed 
initially at rest

Integration is terminated 
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Collisional and Magnetic Presheath structure in 
Strongly-Magnetized, Weakly-Collisional case

12

0 deg 
• CP only 
• No magnetic preheath 
• Drift velocity different than 

zero only in parallel 
direction, V|| =Vy

60 deg 
• CP+MP 
• Drift velocity has 3D features, with 

Vx,Vy,Vz all different than zero 
• V|| gains additional momentum by 

the presence of the MP, becoming 
supersonic inside MP, before quasi-
neutrality is broken (DS)

Strongly magnetized, weakly collisional plasma

85 deg 
• CP+MP 
• At grazing angles the MP size 

becomes larger 
• V||,Vx,Vz are all supersonic  
• Interestingly, Vx (parallel to 

the wall) begins to decrease 
• Sheath size decreases with 
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Ion Drift Velocity at Debye Sheath Entrance 
depends on the inclination of the B-field
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Fluid Kinetic Energy at Debye Sheath 
Entrance vs. inclination ψ of the B-field
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Collisional Dumping of Ion  
Energy is more effective at  
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Flow Inclination from Fluid Model
15
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Flow Inclination θ at Debye Sheath 
Entrance vs. Inclination ψ of the B-field
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Flow Inclination θ at Debye Sheath 
Entrance vs. Inclination ψ of the B-field
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f(E) and f(θ) of a Deuterium Plasma  
in B0=1.0 Tesla field, θ0=30°,45°,60°
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ψ=30° ψ=45° ψ=60° 

Field inclination has 
small effect on energy 
distributions;  
Density does not affect 
the distributions

increasing density 
n~1016-1020 m-3

Angular 
distributions 
are affected by 
the plasma 
density

Davide Curreli  
41° EPS Conference on Plasma Physics  

Berlin, 24 June 2014
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A Fully-Kinetic Analysis is Necessary: PIC

Simulation parameters
< n 6x10
B 1.0 [T]
θB 0,30,60,85 deg
domain size, ~240
# of iterations ~50000
particles per cell ~75

• Methodology 
– kinetic-kinetic explicit PIC (kinetic ions, kinetic electrons) 
– electrostatic 
– Particle pusher: Leapfrog, parallelized w/ MPI 
– Field solver: PETSc Multigrid on structured mesh; 

unstructured mesh also available but not used for plasma 
sheath analysis 

– MPI: OpenMPI 
– Viz: Paraview, Post-proc: Python 

• Simulations 
– 2D3V 
– kinetic ions (107), kinetic electrons(107), ppc~75 
– dt = (1/20)min(ωce, ωpe), O(~500 fs) 

– dx = (1/20)min(λD,rL), O(~0.5 µm) 

– B-field inclinations 0,30,60,85 deg 
– Uniform ionization source 
– Lorentz collision operator  

– Collisionless 
–   
–  
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Fluid Moments obtained from the 
electron and ion particle state-vector

20

• The qualitative features of the fluid 
moments agree with the simpler 
“classical” fluid models (Riemann, 
Zimmermann, etc.) 

• Sheath size decreases with 
increasing inclination of the B-field 

• However, the kinetic simulations 
reveal that ions and electrons are 
not isothermal over the domain and 
electrons are not Boltzmann 

• Ion temperature decreases during 
the acceleration through the CP
+MP sheath 

• Local deviations from classical fluid 
models are observed (not today’s 
topic)
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Fluid Moments obtained from the 
electron and ion particle state-vector
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At θ
0
=0 deg (normal incidence), the energy-angle 

peak occurs at ~5Eth and ~15-18 degrees; 
surprisingly, most of the ions do not arrive at 
normal incidence! All the ion energy is contained 
within 45-50Eth, over three decades of amplitude 
of the distribution

Increasing the B-field inclination causes a shift 
in both energies and angles at the wall; 
At grazing angles the angular distribution is 
narrower along the angular coordinate, but it 
becomes wider along the energy coordinate

Ion Energy-Angle Distributions @ Wall 
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Fluid vs. PIC - Comparison of Energy Peaks 
23
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Ion Energy-Angle Distributions @ Wall 

Scaling is now with respect to the total 
acoustic energy of the plasma
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Ion Energy Distribution Functions @ Wall
25
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Influence of a Lorentz Scattering Operator

• The addition of a Lorentz scattering 
operator does not change the trends 
of the IEDF, as expected by diffusion 
on a sphere of v = constant 

• Here “Intermediate collisions” and 
“High Collisions” are intended w.r.t 
the ion cyclotron and electron 
cyclotron frequencies

26
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Ion Angular Distribution Functions at the Wall
27
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• The peak of f(θw) is independent than 
the collision rate of the Lorentz 
operator 

• In order to quantify the peak trend, 
we have conducted a larger set of 
simulations at slightly-reduced 
resolution

28

Influence of a Lorentz Scattering Operator

mailto:dcurreli@illinois.edu


 D.Curreli  
Dec 18, 2014, ORNL

dcurreli@illinois.edu

Peak angles of the IADF’s vs. ψ

(88°)
(82°)

(60°)

(0°-10°)

(B-field inclinations)
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Above ~25 deg of inclination!
the distribution peaks at an angle 
smaller than the B-field angle
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Ions 3D features at the time of impact
30
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Kinetic IEADs affect how EIRENE evaluates 
the impurity release at the surface  

31

Plasma Module 
(B2, or EMC3)

Neutral Gas 
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plasma
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Neutral Gas 
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Lookup tables of 
material properties, 

atomic physics Track Impurities

Track Neutrals
Lookup tables of 

material properties, 
atomic physics 

Lookup tables of 
material properties, 

atomic physics 
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32The wall properties are considerably affected   
not only by E, but also by θ! Examples for Y(E,θ)
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33Release of Material Particles (e.g. Y, δe) and wall reflection 
coefficients depend on f(Ew) and f(θw) @ wall

Surface binding energy

Y=Y(E,θ)

Reduced Energy
Lindhard electronic  
stopping coefficient

Nuclear stopping  
cross-section

Material Wall

Ratio of Lindhard screening length 
and average lattice constant

θ
Plasma
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34Release of Material Particles (e.g. Y, δe) and wall reflection 
coefficients depend on f(Ew) and f(θw) @ wall

Surface binding energy

Y=Y(E,θ)

Reduced Energy
Lindhard electronic  
stopping coefficient

Nuclear stopping  
cross-section

Material Wall

θ
Plasma

Y (E, 0) = Q · s(E) ·
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in SOLPS:
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Y(E,0) of He->Be from BCA, low energy range
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Y(E,0) of He->Be from BCA, low energy 
comparison with PISCES-B data
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Y(E,0) of He->Be, effect of surface roughness 
using fractal description of surface orientation
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All the curves can be fitted using a 
“Bodhansky-like” formula with 2 free 
parameters Q, Eth:
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Y(E,0) of He->Be, effect of surface roughness 
using fractal description of surface orientation
Results from fitting using a Bodhansky-like formula; non-linear least-squares fitting trend 
of the 2 free parameters Q [atoms/ions], Eth [eV] vs. Fractal dimension
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Increasing Surf.Roughness

Non-linear Least-Squares Trust-Region Fit 
including the 95% confidence bounds from fitting

Non-linear Least-Squares Trust-Region Fit 
including the 95% confidence bounds from fitting

The decrease in Y(E,0) for 
corrugated surfaces can 
be seen as an equivalent 

increase in the  
Energy Threshold Eth
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The fractal description of the surface roughness 
can be included in plasma edge codes 

39
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Next Step
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Conclusions

• Ion Energy-Angle Distribution Function at the boundary of a 
magnetized plasma is strongly dependent on both the magnitude 
and inclination of the magnetic field 

• The peak angle of the ions at wall is always different than the B-field 
angle 

• Proper treatment of the wall response requires the IEADF for the 
calculation of the material properties 

• Progress on BCA codes done with the development of fractal-
TRIDYN and 

44

Thanks!


