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Collaborative experimental workflows in
fusion today focus on control room
interaction
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In ITER era collaborative tools will be
essential
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Develop off-site data analysis/transfer
capability to inform a run-day

* Implement a toolset to optimally reconstruct 3-D
equilibria of H-mode tokamak discharges

* Couple toolset to a single DIlI-D run-day
— take data — transfer to off-site
— analyse off-site — give feed back to experiment

* Project aims to leverage ORNL core strengths to
position US for a leadership role in ITER analysis

— long history in developing 3-D tools for stellarators

Stellarator @ c

strongly 3-D
well developed 3-D codes

> weakly 3-D
still developing
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Workflow for 3-D reconstructions of
H-mode DIII-D discharges
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Workflow for 3-D reconstructions of
H-mode DIII-D discharges
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Small (~10-3), external, 3-D, magnetic-
field perturbations can stabilize
tokamak edge

* Naturally, rapidly occuring edge instabilities, ELMs, can
melt or erode plasma facing components in ITER
A. Loarte et al., PPCF 45, 1549 (2003)

* 3-D perturbations successfully control ELMs in DIlI-D
and other tokamaks T.E. Evans et al., PRL 92 , 235003 (2004)

— Nno perturbation

| with perturbation

ELM strength [a.u.]
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3-D fields have a significant effect on
geometric coefficients, like local shear

T.M. Bird et al., NF 53, 013004 (2013)
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* Hypothesis: Zero shear at negative curvature drives
ideal ballooning micro-turbulance
- enhanced transport limits pedestal growth
- ELMs are stabilized
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Linear resistive MHD shows: Kink
displacements follow current density

126006
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Hypothesis: Discharges with stronger
Kink response are closer to peeling
ballooning stability threshold

* well suppressed ELITE simulations
« good suppression but unstable
at higher perturbation — kel
. I= __—-"""'—’r_'— L Tideash o ]
- Marginally stable S £t i "A\w ;
" . =3 § s - o dRBasz ! B oo
— only mitigation =y V85
— ELMs intermittendly 35 I
return g PE stable 3
. : < Ws i /2 :
 Order follows kink V< Wi/
dlsplacements Pedestal Pressure Stability Metric
A. Wingen et al., EPS P5.029 (2014)
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Workflow for 3-D reconstructions of
H-mode DIII-D discharges
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Exploit DIII-D's good 3-D diagnostic
capability

- 250 magnetic probes + 120 differenced pairs measure
3-D plasma response at the wall

— here: 0B, of a rotating m/n = 2/1 tearing mode at LFS

J.D. King et al., RSI| 85, 083503 (2014)
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Workflow for 3-D reconstructions of
H-mode DIII-D discharges

SXRIS
camera

source

SXRIS
inversion

available

under development

needed
<+—— feed into

<+—— loop
<«—— final feed back

%OAK RIDGE

National Laboratory



Tangential soft X-ray imaging reveals
3-D structures in the H-mode pedestal

» Soft X-Ray Imaging System (SXRIS)
— line-of-sight & time integrated soft X-ray emission

— spatially inverted by Tikhonov regularization A.wingen et al., JCP, submitted

— phase differenced: n = 3 perturbation

line-integrated
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Workflow for 3-D reconstructions of

H-mode DIII-D discharges
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Synthetic diagnostics are under
development

- Magnetics: * SXRIS:
— Test: pulse a single poloidal — assining £(y) to flux surfaces
field coil in vacuum & subtract 0° and 60°
-0.7~
measured V3FIT —0.85
-0.9 i
H—1.o-i
E |
N 1.1
—1.2—5
-1.3¢
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Workflow for 3-D reconstructions of
H-mode DIII-D discharges
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H-mode tokamak 3-D equilibria using
the VMEC code

 ldeal, non-linear MHD code - force balance

« Application to perturbed tokamak
— weakly 3-D — Strong edge gradients
— up-down asymmetric — large currents
— rotation




utilize ORNL's computational hardware
& expertise

- Resolving current sheets requires high fidelity
— number of surfaces: 193, 385, 769, ...

- Effective feed-back requires fast computation
— goal: within 1-3 days

- Both together require massive parallel runs
— available: serial verison > one run takes 2 weeks
— available: openMP version -2 on/y partly parallel

— under construction:
MPI version - . |
fully parallel,
scales on leadership —
class computer .

Time

s Cores 1



VMEC finds 3-D equilibrium

148712, 4101

 Use kinetic EFIT as o =l v T T = 0
initial condition 0 | 3D | — 3D
— VMEC cannot reach i ‘

Separatrix =2 truncate 5 i

* Fixed boundary mode °°| ]
— force current profile
— extract iota profile 5 °9

* Free boundary mode i i
— force iota profile 09 ?

— use iota from fixed run | i
. -1.0f i
* Here: n = 3, 3kA I-coll ; ;
—nN=4m=32,ns=385 |~  boundary| >~ boundary
1.0 1.2 14 1£[1].8 20 22 012 14 1£[n1].8 20 22
. m
CPU time ~ 10 days
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© normalized poloidal flux
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VMEC 3-D equilibrium shows character-
istic n = 3 kink response to I-coil field

- Bended flux surfaces, stabe to resolution changes

— radially aligned, corrugation follows local poloidal mode
number, bifurcation at X-point

* Flux-surface-averaged profiles close to kinetic EFIT
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Workflow for 3-D reconstructions of

H-mode DIII-D discharges
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Use 2-D equilibrium as starting point -
kinetic EFIT well developed and common

* Pyt 1/q, | profiles

— use Akima splines ~ _1oN\ | VEC - VuEC
: : oo - —
— Y2 of points in the = 80| N |
edge ool ’
. . -0.5
- Poloidal Fourier 0.9y
modes of LCFS 7 £,
C e . ~ 0.5¢
— minimized spectral | ™
power width . d 05
* Reads all currents . |
from DIlI-D MDS+ = | |
database ] S
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normalized toroidal flux R [m]
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smart EFIT truncation essential to avoid
numerical instabilities

 Close to rational

-profile from kinetic EFIT
rf . g-pro
surface - . | |
— slow or no = s n=1
convergence 7.01|e o n=2
— profiles oscillate at 65 |* * n=3
the edge vvin=4
— result changes with <> |® ¢ N=5
resolution sl N=6] tuncate here
- Use gaps in rational s N
surfaces
. 4.5¢
— all above issues go | *
away 0.980 0.985 0.990 0.995 1.000
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Workflow for 3-D reconstructions of
H-mode DIII-D discharges
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Optimizer allows feed -back/-forward

* Reconstruction: compare 3-D measurements with
synthetic signals, obtained from 3-D equilibrium > x?

* Modeling: compares synthetic 3-D signals with pre-
defined constraints > y?

- Experiment at DIII-D
— take data & reconstruct 3-D equilibrium

— rerun code with pre-defined constraints
- identify how to run discharge differently

— redo experiment with predicted setup to test physics models
* Use & adapt V3FIT
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Workflow for 3-D reconstructions of

H-mode DIII-D discharges
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A standardized Relational Database is a
key missing element in fusion today

« Stores and provides all input and output for further
analysis & data integrety

- Combine MDS+ with SQL or NoSQL type relational
database
— no dublicate data > use pointer in MDS+
— enable queries or data mining

- Efficiently transfers data between on- and off-site
locations

— sync MDS+ trees or bundle requests to minimize access time

* Project deliverable: Prototype for off-site collaboration
with ITER?
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Summary and Conclusions

* Develop 3-D reconstruction
— basis to test hypotheses for 3-D physics ELM suppression
— today: one 3-D reconstruction could take weeks
— future: in between shots? — like EFIT today

- Develop on-/off-site analysis toolset

— Implement relational database as a prototype for off-site
collaboration in ITER era

— today: up to ~3 GB/shot of data for 10 sec DIII-D shot
— future: international devices (ITER) will have ~10-3000 times
more data per shot: (100-3600 seconds pulses)

« Utilize ORNL's leadership class computational hardware
& expertise
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Year 1: Implementation of 3-D Toolset
for On-/Off-site Computations

* Goal: Determine, optimize, & test code-suite for
analyzing 3-D, high-performance, tokamak physics at
DIII-D

— With off-site analysis & data transfer for rapidly available
results

 Focus/method:

— Implement enhanced 3-D reconstruction codes (e.qg.
parallelized)

— Determine optimal diagnostic set
« How many probes vs images vs profiles needed

— Evaluate & develop pre-processing method
— Do single 3-D reconstruction using toolset (not in “realtime”)
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Year 2: Couple the Analysis Code-suite
to a Single DIII-D Experiment

» Goal: Rapid turnaround (1 or 2 days) of 3-D equilibria of
high-performance DIII-D discharges

— Guide a DIII-D experimental run-day with proposed toolset
— A paradigm of the expected ITER data-analysis environment

 Focus/method:

— Development of scientific run-day to best utilize 3-D toolset
— Deploy/test toolset for real-time feedback
— Execute experimental run-day
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Backups
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Vacuum approximation: 3D fields
created by coils

flux surface perturbed Resonant Magnetic Perturbation
separatrix (RMP) through applied fields

upper I-coil C-call
(inside vessel) (outside vessel)
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M3D-C1: linear, resistive, two-fluid
MHD code calculates a plasma

response to 3-D fields fser = Brpr/Byvac
Poloidal mode spectrum for 148712 ’ ’
1,00 Vacuum M3D-C1 -

0.95

20 -15 -10 -5 0-20 -15 -10 -5 0

Poloidal Mode #, m 7
Three main effects /

* a: resonant screening - Islands shrink

s ~13-12-11-10 -9 -8
« b: resonant amplification - Islands grow m
« c¢: non-resonant amplification - kinking of flux surfaces

N.M. Ferraro, PoP 19, 056105 (2012) %OAK RIDGE
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Plasma response significantly modifies
magnetic topology: simulation shows
all three effects

H-mode discharge with n = 3 RMP color = penetration depth
Vacuum Plasma Response

* island chains dominate structure resonant amplification, islands grow
» stochastic regions - fractal * resonant screening, islands shrink

« radial phase inversion across islands « bended surfaces, radially aligned
- Kink response

Bending pushes islands away %OAK RIDGE

National Laboratory



Preliminary Workflow for
3D Reconstructions of H-mode,

SN, DIII-D Discharges
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Prepare first 3D-equilibrium: g2vmi
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3D Equilibrium: VMEC
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Optimizer, Reconstructor: Dakota, V3FIT
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Synthetic measurements: V3post

: \ single magn.
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Synthetic SXR diagnostic
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3D measurement postprocessing: SXR
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3D measurement postprocessing:
probe pairs
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COMPLEX MODELING ANALYSIS VWORKFLOW
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