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Collaborative experimental workflows in 
fusion today focus on control room 
interaction 
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In ITER era collaborative tools will be 
essential 
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Develop off-site data analysis/transfer 
capability to inform a run-day 
•  Implement a toolset to optimally reconstruct 3-D 

equilibria of H-mode tokamak discharges 
•  Couple toolset to a single DIII-D run-day 

–  take data 
–  analyse off-site  

•  Project aims to leverage ORNL core strengths to 
position US for a leadership role in ITER analysis 
–  long history in developing 3-D tools for stellarators 

Tokamak Stellarator 

–  transfer to off-site  
–  give feed back to experiment 

strongly 3-D 
well developed 

weakly 3-D 
still developing 

3-D codes 
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Workflow for 3-D reconstructions of  
H-mode DIII-D discharges 
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Workflow for 3-D reconstructions of  
H-mode DIII-D discharges 
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•  Naturally, rapidly occuring edge instabilities, ELMs, can 
melt or erode plasma facing components in ITER 
 

•  3-D perturbations successfully control ELMs in DIII-D 
and other tokamaks 

Small (~10-3), external, 3-D, magnetic-
field perturbations can stabilize 
tokamak edge 
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3-D fields have a significant effect on 
geometric coefficients, like local shear 

 

•  Hypothesis:  Zero shear at negative curvature drives 
ideal ballooning micro-turbulance   
à  enhanced transport limits pedestal growth   
à  ELMs are stabilized 

T.M. Bird et al., NF 53, 013004 (2013) 
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Linear resistive MHD shows:  Kink 
displacements follow current density 

•  low edge current 
–  small 

displacements 
–  island like 

•  moderate current 
–  intermediate 

•  strong current 
–  large 

displacements 
–  kink like 
–  ELMs return 
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Hypothesis:  Discharges with stronger 
Kink response are closer to peeling 
ballooning stability threshold   
 
•  well suppressed 
•  good suppression but 

at higher perturbation 
•  Marginally stable 

–  only mitigation 
–  ELMs intermittendly 

return 

•  Order follows kink 
displacements 
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A. Wingen et al., EPS P5.029 (2014) 



11 A. Wingen 

Workflow for 3-D reconstructions of  
H-mode DIII-D discharges 
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Exploit DIII-D's good 3-D diagnostic 
capability 
 
•  250 magnetic probes  +  120 differenced pairs measure 

3-D plasma response at the wall 
–  here:         of a rotating m/n = 2/1 tearing mode at LFS 

J.D. King et al., RSI 85, 083503 (2014) 
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Workflow for 3-D reconstructions of  
H-mode DIII-D discharges 
 

off-site: ORNL 

3-D 
equilibrium 

synthetic 
magentics 

SXRIS 
inversion 

Optimizer 

synthetic 
SXRIS 

2-D 
equilibrium 

initial input 
3-D code 

process 
magnetics 

on-site 

DIII-D SXRIS 
camera 

Relational 
Database 

3-D 
Physics 

Constraints 

available 
under development 
needed 
feed into 
loop 
final feed back 

source 



14 A. Wingen 

Tangential soft X-ray imaging reveals  
3-D structures in the H-mode pedestal 

•  Soft X-Ray Imaging System (SXRIS) 
–  line-of-sight & time integrated soft X-ray emission 
–  spatially inverted by Tikhonov regularization  
–  phase differenced: n = 3 perturbation  

                              periodically flipped 
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Workflow for 3-D reconstructions of  
H-mode DIII-D discharges 
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Synthetic diagnostics are under 
development 

•  Magnetics:  
–  Test: pulse a single poloidal  

field coil in vacuum 

•  SXRIS:  
–  assining ε(𝜓) to flux surfaces 

& subtract 0˚ and 60˚ 

Probes 
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Workflow for 3-D reconstructions of  
H-mode DIII-D discharges 
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H-mode tokamak 3-D equilibria using 
the VMEC code 
•  Ideal, non-linear MHD code  à  force balance 
•  Application to perturbed tokamak 

–  weakly 3-D  
–  up-down asymmetric  
–  rotation 

–  strong edge gradients  
–  large currents 
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utilize ORNL's computational hardware 
& expertise 

•  Resolving current sheets requires high fidelity 
–  number of surfaces: 97, 193, 385, 769, … 

•  Effective feed-back requires fast computation 
–  goal:  within 1-3 days 

•  Both together require massive parallel runs 
–  available:  serial verison  à  one run takes 2 weeks 
–  available:  openMP version  à  only partly parallel 
–  under construction:   

MPI version  à   
fully parallel,  
scales on leadership  
class computer 
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VMEC finds 3-D equilibrium 
•  Use kinetic EFIT as 

initial condition  
–  VMEC cannot reach 

separatrix à truncate  

•  Fixed boundary mode 
–  force current profile 
–  extract iota profile 

•  Free boundary mode 
–  force iota profile 
–  use iota from fixed run 

•  Here: n = 3, 3kA I-coil 
–  n = 4, m = 32, ns = 385 

fixed 
boundary 

free 
boundary 

148712, 4101 

CPU time ~ 10 days 

2-D  
3-D 

2-D  
3-D 
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VMEC 3-D equilibrium shows character-
istic n = 3 kink response to I-coil field 
•  Bended flux surfaces, stabe to resolution changes 

–  radially aligned, corrugation follows local poloidal mode 
number, bifurcation at X-point 

•  Flux-surface-averaged profiles close to kinetic EFIT 
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Workflow for 3-D reconstructions of  
H-mode DIII-D discharges 
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Use 2-D equilibrium as starting point  à  
kinetic EFIT well developed and common 

•  Ptot, 1/q, I profiles 
–  use Akima splines 
–  ½ of points in the 

edge 

•  Poloidal Fourier 
modes of LCFS 
–  minimized spectral 

power width 

•  Reads all currents 
from DIII-D MDS+ 
database 
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smart EFIT truncation essential to avoid 
numerical instabilities 

+ 

truncate here 

q-profile from kinetic EFIT 
•  Close to rational 

surface: 
–  slow or no 

convergence 
–  profiles oscillate at 

the edge 
–  result changes with 

resolution 

•  Use gaps in rational 
surfaces 
–  all above issues go 

away 
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Workflow for 3-D reconstructions of  
H-mode DIII-D discharges 
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Optimizer allows feed -back/-forward 

•  Reconstruction:  compare 3-D measurements with 
synthetic signals, obtained from 3-D equilibrium  à  𝝌2 

•  Modeling:  compares synthetic 3-D signals with pre-
defined constraints  à  𝝌2 

•  Experiment at DIII-D 

–  take data & reconstruct 3-D equilibrium 
–  rerun code with pre-defined constraints 

à  identify how to run discharge differently 
–  redo experiment with predicted setup to test physics models 

•  Use & adapt V3FIT 
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Workflow for 3-D reconstructions of  
H-mode DIII-D discharges 
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A standardized Relational Database is a 
key missing element in fusion today 

•  Stores and provides all input and output for further 
analysis & data integrety 

•  Combine MDS+ with SQL or NoSQL type relational 
database 
–  no dublicate data  à  use pointer in MDS+ 
–  enable queries or data mining 

•  Efficiently transfers data between on- and off-site 
locations 
–  sync MDS+ trees or bundle requests to minimize access time 

•  Project deliverable:  Prototype for off-site collaboration 
with ITER? 
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Summary and Conclusions 

•  Develop 3-D reconstruction 
–  basis to test hypotheses for 3-D physics ELM suppression 
–  today:  one 3-D reconstruction could take weeks 
–  future:  in between shots? – like EFIT today 

•  Develop on-/off-site analysis toolset 
–  implement relational database as a prototype for off-site 

collaboration in ITER era  
–  today:  up to ~3 GB/shot of data for 10 sec DIII-D shot   
–  future:  international devices (ITER) will have ~10-3000 times 

more data per shot: (100-3600 seconds pulses) 

•  Utilize ORNL's leadership class computational hardware 
& expertise 
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Year 1: Implementation of 3-D Toolset 
for On-/Off-site Computations  
 
•  Goal: Determine, optimize, & test code-suite for 

analyzing 3-D, high-performance, tokamak physics at 
DIII-D 
–  With off-site analysis & data transfer for rapidly available 

results 

•  Focus/method:  
–  Implement enhanced 3-D reconstruction codes (e.g. 

parallelized) 
–  Determine optimal diagnostic set  

•  How many probes vs images vs profiles needed 

–  Evaluate & develop pre-processing method 
–  Do single 3-D reconstruction using toolset (not in “realtime”) 
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Year 2: Couple the Analysis Code-suite  
to a Single DIII-D Experiment 

•  Goal: Rapid turnaround (1 or 2 days) of 3-D equilibria of 
high-performance DIII-D discharges 
–  Guide a DIII-D experimental run-day with proposed toolset 
–  A paradigm of the expected ITER data-analysis environment 

•  Focus/method:  
–  Development of scientific run-day to best utilize 3-D toolset 
–  Deploy/test toolset for real-time feedback   
–  Execute experimental run-day 
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Backups 
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Resonant Magnetic Perturbation  
(RMP) through applied fields 

Vacuum approximation: 3D fields 
created by coils 

separatrix 

lower divertor 

lower x-point 

flux surface perturbed 

à  large stochastic layer formation  

C-coil 
(outside vessel) 

upper I-coil 
(inside vessel) 

lower I-coil 
(inside vessel) 
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m
 = nq 

m
 = nq 

Vacuum M3D-C1 

M3D-C1: linear, resistive, two-fluid 
MHD code calculates a plasma 
response to 3-D fields 

N.M. Ferraro, PoP 19, 056105 (2012) 

Three main effects 
•   a:  resonant screening  à  Islands shrink 
•   b:  resonant amplification  à  Islands grow 
•   c:  non-resonant amplification  à  kinking of flux surfaces 

Poloidal mode spectrum for 148712 

a 

b 

c 

fscr = Br,pr/Br,vac
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Plasma response significantly modifies 
magnetic topology: simulation shows 
all three effects 

Vacuum Plasma Response 

•  island chains dominate structure 

•  stochastic regions à fractal 

•  radial phase inversion across islands 

H-mode discharge with n = 3 RMP color = penetration depth 

•  resonant amplification, islands grow 

•  resonant screening, islands shrink 

•  bended surfaces, radially aligned 
à  Kink response 

HFS LFS LFS X- 
pnt 

Bending pushes islands away 
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Complete layout 
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Prepare first 3D-equilibrium: g2vmi 
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3D Equilibrium: VMEC 
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Optimizer, Reconstructor: Dakota, V3FIT 

Reconstructor 

measured signals 

synthetic signals 

parameter 
contrains 

Para-
meter-

izer 

Ip 

jtor profile 

pres profile 

LCFS 

B,F,E,I,C  
-coil currents 

phi enclosed 

Ip 

jtor profile 

pres profile 

LCFS 

iota profile 

B,F,E,I,C  
-coil currents 

phi enclosed 

chi^2 

Profiler 

new set of 
parameters 

set of  
parameters  

to vary 



40 A. Wingen 

Synthetic measurements: V3post 
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Synthetic SXR diagnostic 
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3D measurement postprocessing: SXR 

Camera 
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3D measurement postprocessing:  
probe pairs 
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COMPLEX MODELING ANALYSIS WORKFLOW

•  LIMITED DB CALLS

•  FOCUS: RECORDKEEPING
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