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Summary

* Following massive gas injection, inwardly propagating cold
front destabilizes MHD cascade, as directly detected by
magnetics

 The toroidal phase of the n=1 MHD appears to affect TQ
radiation asymmetry

* Toroidal evolution of mode affected by three factors: injector
location, pre-MGlI plasma rotation, and large n=1 EFs
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 |Introduction

 Magnetic measurements of MHD mode structure during MG

* Relationship between MHD activity and thermal quench (TQ)
radiation asymmetry

* Factors influencing evolution of pre-TQ MHD

Diin-D
D. Shiraki/ORNL/June 20, 2014

NATIONAL FUSION FACILITY



Introduction

Diin-D

NATIONAL FUSION FACILITY

D. Shiraki/ORNL/June 20, 2014



Effective TQ mitigation must account for 3D

effects

From Hollmann et al. NF 48 (2008) 115007

® Impurity injeCﬁon is now q — 12 (a) TQ rad|ated energy -7 >
° ° 2 L _-=" D>

standard tool for disruption =V s R
mitigation $ o weTlapy 2 a0
Y ook m, B % 3007 (D3]
— Gas or pellet injection 12 3 2007 (1)

O r---v—-.#—m . >p- -]

° ° ° ° ° ° S 0.4}
* Effective in increasing radiation = 1 oo eda racion

fraction, reducing vessel forces 0.0 05 e vy O 15
(OD effects)

From Commaux, APS 2013

o PeriscopeView T (°C)

* Concerns remain whether
radiated heat loads are uniform |
enough (3D effects)

— Radiation asymmetry must be 300 o
minimized ;’]

0 100 200 300 400 500 600

Diin-D
D. Shiraki/ORNL/June 20, 2014 5

NATIONAL FUSION FACILITY



Large MHD activity observed during MGl fast

shutdown
MGl valve
triggered pre-TQ TQ
e Typical sequence of MGI shutdown: * . \; *
— MGl triggered at 2000 ms 11 Plasma current (MA)
— Gas arrives at plasma surface after 2 Lndimegratell
several ms time-of-flight ' density (107 cm?)
20+
— Cold front propagates in from edge 10 ——r
to core, large MHD activity observed Sl e

(pre-1Q) 100}

-

— Rapid TQ occurs, with large P, flash, ' DISRAD, Ch. 10 (V)
major radius collapse

:

Majér radius (m)

— Cold resistive plasma decays during
current quench (CQ)

:

1.6
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Large MHD activity observed during MGl fast

shutdown
MGl valve
triggered pre-TQ TQ
* Typical sequence of MGI shutdown: — \; *
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— Gas arrives at plasma surface after 20 ————
several ms time-of-flight  ehsity (10" G
20+
— Cold front propagates in from edge 10 ——r -
to core, large MHD activity observed Sl e ‘
(pre—TQ) 100 .
O [
1

talk!

— Rapid TQ occurs, with large P, flash, ' DISRAD, Ch. 10 (V)
major radius collapse
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Majér radius (m)

— Cold resistive plasma decays during
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Magnetic measurements of MHD mode structure during MG
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Large array of magnetic probes measures

spatial and temporal evolutions of MHD activity

e Pair-differenced “3D” e Seven toroidal arrays
magnetics reject n=0 available
components

. . ‘ ‘
Outboard midplane “66M” array

1A

/413=

New in 2013! 74
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Pre-TQ MHD is dominantly n=1

300 155694
ield (G
 Simultaneous fit to n=1, 2, 3 for RO )
toroidal array (10 difference pair 500!
signals)

1007

* Pre-TQ MHD is dominantly n=1

DISRAD
2l Ch. 10 (V)

 From now on, will consider n=1 signal
from each toroidal array

— N

0 T
2005.0 2005.5 2006.0

D”’-D D. Shiraki/ORNL/June 20, 2014 Tlme (mS) 10

NATIONAL FUSION FACILITY




Low-order MHD mode sitructure is well-defined

during pre-TQ

155694

200l n=1 allmplitude (G)
* Monotonic growth of

n=1 signal on LFS

(66M, ) ) 100

0.

* Definite phase 180
relationship between 90 -

arrays
n=1 phase (deg)

90
-180L . . . —
0.8 | | ' |
DISRADOSU [V]
0 . . ‘
2005.0 2005.4 2005.8

Time (ms)
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Low-order MHD mode sitructure is well-defined

during pre-TQ

* Monotonic growth of
n=1 signal on LFS
(66M, , )

e Definite phase
relationship between
arrays
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NATIONAL FUSION FACILITY

200

100

180
90

n=1 amplitude (G) 155694

Fit mode
structure

herelt

_90 -
-180L. . . . | I
0.8 ' ‘
DISRADOSU [V]
0 ‘
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Time (ms)
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Dominant mode at peak of TQ is m/n = 2/1

e Mode structure fit to 50 Bp
difference pairs

— Probe locations indicated
by squares

Theta (Deg)

e Outboard/inboard
midplane signals in phase

1801

e Dominant mis even 0 R
Shot 155694: x = 2005.7 ms
300 ‘ ' ' '
@ _ —
= 0
L
-300 1 , . .
-300 0 300
Measured (G)
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Dominant mode at peak of TQ is m/n = 2/1

e Mode structure fit to 50 Bp

difference pairs %0
— Probe locations indicated A
by squares g :
g
e OQutboard/inboard _
midplane signals in phase e
. . -1807- = u " ~——
e Dominant mis even 0 R
Shot 155694: x = 2005.7 ms
300 ‘ ' ' '
| At peak of TQ, 2/1 is - .
dominant s I
= o
-300

300 | 0 | 300
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Low-order MHD mode sitructure is well-defined

during pre-TQ

* Monotonic growth of
n=1 signal on LFS
(66M, , )

e Definite phase
relationship between
arrays
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n=1 amplitude (G) 155694

Fit mode
structure
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Low-order MHD mode sitructure is well-defined

during pre-TQ

155694

200l n=1 allmplitude (G)
* Monotonic growth of

n=1 signal on LFS
(66M, , )

100

180

e Definite phase
relationship between 90
arrays

‘\n=1 phase (deg)

-90
e On HFS (1A,1B) mode asol |
“flips phase” 0.8 ' | ' |
DISRADO5U [V]
 This is a robust feature
observed in each shot!
0 . . ‘
2005.0 2005.4 2005.8

Time (ms)
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Low-order MHD mode sitructure is well-defined

during pre-TQ

n=1 amplitude (G) 155694

Fit mode

 Monotonic growth of 200"

n=1 signal on LFS
(66M, , )

100

180

e Definite phase
relationship between 90
arrays

‘\n=1 phase (deg)

-90
e On HFS (1A,1B) mode NI, |
“flips phase” 0.8 ' | ' |
DISRADO5U [V]
 This is a robust feature
observed in each shot!
0 . . ‘
2005.0 2005.4 2005.8

Time (ms)
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Prior to 2/1 onset, 3/1 mode is dominant

* Mode structure fit to 50 B,
difference pairs
— Probe locations indicated
by squares

Theta (Deg)

e Qutboard/inboard

midplane signals out of % Out of phase

phase :
-180
0 90 180 270 360
Phi (Deg)
e Dominant mis odd Shot 155694: x = 2005.4 ms
100 ' ' '
o5
CI
E
-100F o % .
100 0 | 100
Measured (G)
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Prior to 2/1 onset, 3/1 mode is dominant

e Mode structure fit to 50 Bp
difference pairs %

— Probe locations indicated
by squares

Theta (Deg)

o

e Qutboard/inboard
midplane signals out of

phase

-90}

-180 7- u [ ] | ]
0 90 180 270 360
Phi (Deg)

e Dominant mis odd Shot 155694 x = 2005.4 ms
100 ' ' '

| Early in the pre-TQ, 3/1 is
dominant I ]
100 o < :

Fit (G)
o

I

2100 | 0 | 100
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Prior to 2/1 onset, 3/1 mode is dominant

Shot 155694: x = 2005.4 ms
O o ]

Theta (Deg)

1801
0 90 180 270
Phi (Deg)

360 0 90 180 270 360
Phi (Deq)

 The two modes can only be distinguished using the new high-
field side arrays!
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Observed mode evolution consistent with

inwardly propagating cold front

 Consistent with modes destabilized by inward propagation of
cold front and contraction of current channel

— Previously inferred from disruption timsecales in g-scans

e This allows an estimate of cooling front propagation speed

e Very crudely, v~ (0.1 m) /(300 ps) =300 m/s
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Relationship between MHD activity and thermal quench (TQ)
radiation asymmetry
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Radiated power measured during disruptions

e Two photodiode arrays
provide fast measurements
of radiated power

 Broad sensitivity gives
bolometer-like
measurement

 Each array has poloidally
resolved views

Signal (V)
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Radiation asymmetries measured in DIII-D by

toroidally separated photodiode arrays

SX90 P qq s
(90° R+1,R-1) fi!

vessel

from Hollmann, RSI 2011

((210°R+1)

from Gray, RSI 2004
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Radiation asymmetries measured in DIII-D by

toroidally separated photodiode arrays

Medusa MGI
(15° R+1)

SX90 P,

vessel

) ° R+
7 (210° R+1)

Cerberus MGl
(135° R-2)

from Gray, RSI 2004
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During TQ, mode phase well defined

155694

000l n=1 ellmplitude (G)
* Mode can rotate during pre-TQ

growth

— Typically on the order of half a 1007
toroidal transit ;
180
e But during rapid P,_4 flash, mode 90 1

phase is approximately constant
— Characterized by midplane phase

n=1 phase (deg)

_90 L
-180L . . . —
0.8 ' ‘ ' |
. . DISRADO5U [V]
e Question: does this TQ MHD phase
affect radiation flash?
0 . . ‘
2005.0 2005.4 2005.8

Time (ms)
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Toroidal phase of mode may affect TQ

radiation asymmetry

Proxy P_, (a.u.)

90° 155669
300 n=1 Bp amp (G) 155669 210°
200 oo 0 1 | Decreased
90 ==2] | light at 210°
100} ] 0
/\_/ 0
0 . , —
360 ' ' .
. % Proxy = sum(raw signals)
___/._._-\/\ -
180 n=1Bp phase (deg) T 90° 155689
__» | 210° :[\
0 . A — 0 i | Increased
2004 _ 2007 90° light at 210°
fine s P\
0 - .
2004 _ 2007
Time (ms)

* P4 at210°increases (relative to P, 4 at 90°) when mode is
near ~30°
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3D distribution of radiation sources depends

on mode phase

15 w ‘

* 13 shofs with applied ¢ 30fEC Hoan Ay |
EFs to influence mode = | I I s~ s
phase ‘cf‘j . o5 s

A “ %
 Poloidal distribution of 5 5» ’
P..q Ot 210° depends |
0

\.-.-.-._r' ¥/ ‘ | .
on n=1 mode phase o s 18 270 560
‘ n=1 Bp phase
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3D distribution of radiation sources depends

on mode phase

15

* 13 shofs with applied ~ ch32[Er 90 fan array R
EFs to influence mode T e o o
phase g w

g e

* Poloidal distribution of 5 °°

P..q at 90° depends on |
0

\.—.—'.—.—r. ¥/, ‘ | .
n=1 mode phase 0 % 180 270 360
‘ n=1 Bp phase
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Measurements from both arrays indicate

helical mode structure important

15 | w
- 90° fan array

e 13 shots with applied | o |
EFs to influence mode 2 - ° o]
phase £ w

g’ 5- X O .

 Phase relationship @ Ap ~120° °

A——

between P, af two
fan arrays is equal to
their toroidal

- 210° fan array

separation o ool
qé 10~ © o <o @ -
_E:S L4 <> @ 07
e Suggests that poloidal/ g o - o
toroidal structure of 3D 25 o |
radiation pattern |
related to MHD Jo
0 90 180 270 360
n=1 Bp phase
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Radiation asymmetry measurements believed

o be underestimates

* There are two reasons for this:

e 1. Saturation of signals o 2. Skewed distribution of
actual mode phases

2013 MGl shots (81 total)

20[
15 '_ 154029 _'
154171
i 154173 T
154174
»n [ 154016] 154167 154176| ]
-16 10k 154020 154168 154179) N
= i 154182 154180 154184 ]
) 154183154185, ]
154186154189,
I 154187 T
B 154192 154026 T
5 154019]154021] 154166, 154170154024 N
B 154018 154025154023 154181 154172]154030 T
B 154022[152014) 154015 154190 154028 154191 154175]154169
B 154027 154017, 154177 154188|154178[152013 T
018 154031 ] ‘
0 90 180 270 36

n=1 Phase during TQ (Deg)
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Factors influencing evolution of pre-TQ MHD
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MHD toroidal dynamics are observed to be

influenced by three factors

* Injector location
 Pre-MGI plasma rotation

e n=1 error fields
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Initial mode phase determined by injection

location (Medusa, R+1, 15°)
EF @ 14}OOms

No EF
300 T T T
154013
154014
200
n=1B, amp (G)
measured at R+1 154618 /%
155659
100 i

155663

360

n=1 B, phase (deg)

measured at R+1 180r

2006
Time (ms)

2008

300

200}

100+

360

180+

0

2004

154023

154025
154026

154028

154030

2006
Time (ms)

2008

300

200t

100}

360

EF @ 1950ms
154015
154017 .
154019 ]
154021 /&fL \
)
J

* Mode begins 180° from injection: as predicted by NIMROD!

Diin-D
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0 . <+« Medusa
2004 2006 2008
Time (ms)
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Initial mode phase determined by injection

location (Cerberus, R-2, 135°)

No EF EF @ 1400ms
160 ' ' ' 160 ' ' '
154169
| 154170 | | 155686
155690
B 155661 155693
n=1 Bp amp (G) 80 155682 T - 155695

measured at R-2 155676

360 ' - - 360 ' ™\ 180° from
] N~ Qﬁ """"" :hCerberus
n=1 B, phase (deg) \\A]\/ | ¥ |

180 180

NN
meqsured atR-2 | M /%K ________________ \Q\A ______ <+« Cerberus
O A\ L 1 1 0 \/‘M\ A
2003 2005 2007 2003 2005 2007
Time (ms) Time (ms)

* Mode begins 180° from injection: as predicted by NIMROD!
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Mode rotates from initial phase due to pre-

MGI plasma rotation (Medusa)

MGl triggered
No EF v

0 ' ' ' 360

cerarotc
t7/t8 (km/s) _ \ _
50
Increasing ) ‘\ i Plasma
rotation N\M 1807 \ | 1 rotation
100}
n=1 Bp phase

150 . . . ol_atRO

1800 1900 2000 2004 2006 2008
Time (ms) Time (ms)

 Plasma rotation before MGl influences pre-TQ mode rotation
— Pre-TQ rotation << pre-MGl rotation

 Most end near ~250°, due to initial phase plus typical rotation
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Mode rotates from initial phase due to pre-

MGI plasma rotation (Medusa)

MGl triggered
No EF v

t7/t8 (km/s)

0 ' - 360 N -
cerarotc —— =t — _iﬁo beams

50} NS
Increasing AL * ‘\ “ Agh Plasma
100 I
n=1 Bp phase
150 s oLatRO
1800 1900 2000 2004 2006 2008
Time (ms) Time (ms)

 Plasma rotation before MGl influences pre-TQ mode rotation
— Pre-TQ rotation << pre-MGl rotation

 Most end near ~250°, due to initial phase plus typical rotation
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Rotation effect with Cerberus less clear

cerarotc t7/t8 (km/s) n=1 Bp phase at RO
0 ' I 360 - V\\ -

50
Increasing
rotation
100

\ A 180}
[N/
150 . . - 0 \\jM
1800 1900 2000 2003 2005 2007
Time (ms) Time (ms)

* Modes tend to go to ~250° (residual EF?)

 Rotation affects how the mode gets there
— Mode sometimes rotates against flow
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EF competes with rotation in determining

mode phase (Medusa)

360 " " " ] 360

 Large n=1 EF applied

using I-coils 7\
EF on at 150! | g0l _

1400 ms
 Mode rotates from | Plasma
initial phase towards EF _EFphase MPID phase |rotation
0 1 1 1 O L 1 \A 1
1800 1900 2000 2004 2006 2008
° Torque from EF Time (ms) Time (ms)

competes against
rotation effect
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EF competes with rotation in determining

mode phase (Medusa)

360 "~ T | 360[ A
i

 Large n=1 EF applied , _ s iy
using l-coils ------7-\-3;\- l
EF on at
180 | | — |

1400 ms 180
e Mode rotates from (Large braking) | | | | Plasma
initial phase towards EF EF phase MPID phase rotation
0 1 Il 1 O L 1 \A 1
1800 1900 2000 2004 2006 2008
° Torque from EF Time (ms) Time (ms)
competes against 360 T T
rotation effect
— Red case is like .
inverted pendulum EF on at
180+ 1
1950 ms
(Little braking) |
EF phase |__| " MPID phae |
O | Il O 1 | |
1800 1900 2000 2004 2006 2008

Time (ms) Time (ms)
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EF effect observed for Cerberus, but less clear

* Final mode phase EF on at 1400 ms
affected by applied EF 860 360 v\
EF phase MPID phase
A
* Evolution of mode to get .| | g0 ;\\/’\/ \
there is again more (‘—~- )
complex ' ' /\\
0 - - - 0 A A .
1800 1900 2000 2003 2005 2007
Time (ms) Time (ms)

* In general, mode behavior with Cerberus injection needs
further analysis

Diin-D
D. Shiraki/ORNL/June 20, 2014 4]

NATIONAL FUSION FACILITY



Summary

* Following massive gas injection, inwardly propagating cold
front destabilizes MHD cascade, as directly detected by
magnetics

 The toroidal phase of the n=1 MHD appears to affect TQ
radiation asymmetry

* Toroidal evolution of mode affected by three factors: injector
location, pre-MGlI plasma rotation, and large n=1 EFs
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Future work: three upcoming DIII-D

experiments on TQ mitigation this year

* MGI radiation asymmeiry
— Befter isolate different effects on n=1 mode phase

— Accurately measure radiation asymmetry with current MGl
system

e SPlv. MGI
— Are these 3D effects similar in SPI fast shutdown?@

e Disruption mitigation in the presence of MHD instability

— 0D effects: particle assimilation, radiation fraction, disruption
timescales, efc.

— 3D effects: MHD, radiation asymmetry
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