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Preliminaries: shear Alfvén waves

Shear (or torsional) Alfven waves are incompressible waves that propagate
along the direction of the magentic field lines.

vA = B√
µ0ρ

ω = vAk‖
Perturbed electric field and fluid velocity are perpendicular to the
magnetic field.

I “Plucking” the magnetic field line



Alfvén continuum arises from the linearized ideal MHD
model

The linearized ideal MHD equations are the momentum equation, the
combined Faraday’s law/Ohm’s law, and the equation of state:

ρω
2
ξ = ∇δp + δB×J + B× (∇×δB)

δB = ∇× (ξ ×B)

0 = δp + ξ ·∇P + γsP∇ ·ξ .

J×B = ∇P
∇×B = J
∇ ·B = 0.

Zero beta plasmas have the following eigenmode equation:

B ·∇
(
|∇Φ∗|2

B2 B ·∇ξs

)
+ ρω

2 |∇Φ∗|2

B2 ξs = 0.



Discrete Alfvén eigenmodes

Discrete Alfven eigenmodes (AEs) can exist in gaps present in the
shear Alfven continuum.

I Do not experience continuum damping
I Can be driven unstable by energetic particles (may be important for

ITER)

The toroidicity-induced Alfven eigenmode (TAE) is a well known AE
that can exist in toroidal plasmas.
Analogously, can islands induce a finite gap in the Alfven spectrum?

I What is the mode structure of the potential instability?



The TAE gap in a nutshell

A cylindrical geometry exhibits both poloidal and axial directions of
symmetry.
Wrapping the cylinder into a torus results in poloidal variation in the
magnetic field strength.

I This results in the high-field side and low-field side
I Effectively, the poloidal direction of symmetry is lost

The loss of symmetry results in a coupling of poloidal mode numbers
m1 and m2.
This coupling results in a toroidicity-induced Alfven eigenmode (TAE)
gap.

I Discrete TAE modes can grow unstable in this frequency gap range,
unaffected by continuum damping



The TAE gap in a nutshell

Singular solutions to the Alfven eigenmode equation give the continuous
spectrum (continuum) of frequencies

From [Cheng and Chance(1986)]



Zoology

From Biancalani’s thesis



An unexplained AE has been observed in MST

Recently, Jon Koliner observed n = 4 and n = 5 modes in MST NBI
plasmas with Alfvenic scaling (see
[Koliner et al.(2012)Koliner, Forest, Sarff, and Anderson])
STELLGAP calculations indicate that the modes are not TAE
(toroidicity-induced) modes
Resonant TAE (rTAE)? KBM? Or something else?...



STELLGAP calculations show AE modes are clearly not
TAEs
What type of AE mode is this?
[Koliner et al.(2012)Koliner, Forest, Sarff, and Anderson]



Calculations with compressibility/sound wave effects also
seem to show that modes are not BAE/BAAEs
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Could an island explain the oberved frequencies of the
mode in MST?

It is known that MST has a large n=5 magnetic island in this
configuration
The island is NOT included in STELLGAP calculations

I STELLGAP uses a VMEC nested flux surface equilibrium

The island could have a significant effect on the Alfven continuum
Can the island help predict the ~60kHz n=5 Alfven activity seen in
experiment?



Introduction to magnetic island coordinates

The magnetic field in a cylinder with a magnetic island will be represented
using the island helical flux coordinates (Φ∗,χ,α∗) described in
[Hegna and Callen(1992)]. These coordinates are defined in terms of the
straight field line coordinates (ψ,θ ,ζ ) of the background cylindrical
magnetic field B0:

B = B0 + B1

B0 = q∇ψ×∇θ + ∇ζ ×∇ψ.

The island-producing magnetic field perturbation is assumed of the form√gB1 ·∇ψ = n0Asin(m0θ −n0ζ −φ0). This allows a magnetic island to
form at the rational surface q (ψ0) = q0 = m0/n0.



Island magnetic coordinates
In terms of the cylindrical coordinates, the helical coordinates are

x = ψ−ψ0

α = ζ −q0θ +
φ0
n0

χ =
θ −ζ

1−q0

Ψ∗ ≈ q′0
x2

2 −Acos(n0α)

k2 =
2A

A + |Ψ∗|

Φ∗ =±wE (k)

πk
α
∗ =

π

n0K (k)
F
(n0α

2 ,k
)
.



Magnetic island geometry

Ψ∗/Φ∗ are both helical flux surface labels
α∗ is the “poloidal-like” angle
χ is the angle into the helical island (taken here as a symmetry
direction)
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For q′0 > 0,
Ψ∗ =−A at the O-point
Ψ∗ = A at the separatrix



Straight field-line coordinates in the presence of an island
In the island coordinate system, the total magnetic field can be written in
a straight field-line form as

B = B0 + B1 = ∇α
∗×∇Φ∗+ Ω∇Φ∗×∇χ,

where Ω = dΨ∗/dΦ∗ is the island rotational transform, given by

Ω(Ψ∗) =± πq′0w
4kK (k)

outside the island separatrix and

Ω(Ψ∗) =± πq′0w
8K (κ)

κ
2 =

Ψ∗+ A
2A

inside the separatrix.
This allows us to write B ·∇ in a much simpler form.



Linearized ideal MHD

The linearized ideal MHD equations are the momentum equation, the
combined Faraday’s law/Ohm’s law, and the equation of state:

ρω
2
ξ = ∇δp + δB×J + B× (∇×δB)

δB = ∇× (ξ ×B)

0 = δp + ξ ·∇P + γsP∇ ·ξ .

J×B = ∇P
∇×B = J
∇ ·B = 0.



Eigenvalue equation

This equation can be simplified for the background cylinder case of
interest and by considering zero beta plasmas P = 0. Looking for periodic
solutions with non-square-integrable radial singularity results in the
eigenvalue equation from [Cheng and Chance(1986)]:

B ·∇
(
|∇Φ∗|2

B2 B ·∇ξs

)
+ ρω

2 |∇Φ∗|2

B2 ξs = 0.

The surface displacement will be assumed to be of the following form:

ξs (χ,α∗) = ξ0 (α
∗)e−ilχ .

Under this assumption, the B ·∇ operator can be expressed as

B ·∇ξs =
1
√g

(
Ω

∂

∂α∗
− il
)

ξs =
1
√g e

il
Ωα∗Ω

∂

∂α∗

(
ξse−

il
Ωα∗
)
.



General form of Alfvén eigenmode equation
Thus the differential equation can be written as the second-order ODE:

d
dα∗

(
|∇Φ∗|2 d

dα∗
Y
)

+ ρω
2
√g2

Ω2 |∇Φ∗|2 Y = 0,

Y = ξ0 (α
∗)e−

il
Ωα∗ .

The structure of the differential equation can be simplified in terms of
x = x(Ψ∗,α∗) and α∗. The resulting form looks like

d
dα∗

[
x2 d

dα∗
Y
]

+
ω2x2

ω2
AΩ2 Y = 0

x2 =
2
q′0

(Ψ∗+ Acosα(α
∗))

ωA =
2πvA
q0L

This is a Sturm-Liouville problem in α∗ for each flux surface Ψ∗.



Solution near the O-point

Under the assumption that q′0 > 0, the O-point is located at α = 0 and
Ψ∗ =−A. On a flux surface very near the O-point, |α| will be very small
everywhere on the surface, taking a maximum value of αmax = ε << 1.
The radial coordinate x can then be written as

x2 =
2A
q′0

(−1+ cosε)≈ Aε2

q′0
.

This simplifes the differential equation to

d2Y
dα∗2

+
ρω2√g2

q′0An2
0ε2 Y ≈ 0



Solution near the O-point (cont’d)

d2Y
dα∗2

+
ρω2√g2

q′0An2
0ε2 Y ≈ 0

This differential equation describes a simple harmonic oscillator, and
periodicity must be enforced:

Y = Y0ei ω

ωAΩα∗
= Y0eijα∗

This gives us our condition for solution as

ω

ωAΩ
= j

Finally, the Alfven frequencies in the vicinity of the O-point can be found
with Ω≈ q′0w/4:

ω
2 = j2Ω2

ω
2
A =

1
16 j2 (q′0w

)2
ω

2
A

This agrees with the result from
[Biancalani et al.(2011)Biancalani, Chen, Pegoraro, and Zonca].



Computed behavior near O-point agrees with analytical
prediction

ω
2 = j2Ω2

ω
2
A



Biancalani’s model describes upshift in BAE frequency

Numerical calculations (including finite beta) show that the spectrum is
modified, with a new higher BAE-CAP frequency at the separatrix.



Physical mechanism for modification

Field lines on a rational surface close on themselves in analogy to a
closed string
Standing waves – lowest energy state is longest wavelength
Thus the lowest k// and lowest frequency occur at the rational surface
When island is present, the separatrix with X-point shortens the
length of the “string”, leading to a shorter wavelength and raising the
frequency.



Numerical solution gives model for CAP at the separatrix
Shooting method code is used to solve eigenmode equations. Solution
shows that at separatrix, Ω2

nlBAE−CAP = n2
islM (nisl = 1 shown here) is the

lowest frequency of the spectrum (BAE-CAP).

With the definitions M = q2
0s2w2/4r2

0 and Ω2 = (ω2−ω2
BAE−CAP)/ω2

A,
one arrives at the nonlinear BAE-CAP frequency due to the island:

fnlBAE−CAP = fBAE−CAP

√
1+

q2
0s2n2

islw2f 2
A

4r2
0 f 2

BAE−CAP



Upshifted BAE frequency due to an island

Under the assumption that the BAE frequency is shifted approximately the
same as the BAE-CAP frequency, one arrives at the upshift equation for
the BAE mode:

fBAE = fBAE ,0

√
1+

q2
0s2n2

islw2f 2
A

4r2
0 f 2

BAE−CAP



STELLGAP-computed BAE frequency should be upshifted
due to the island
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The model explains the observed frequency of the Alfvenic
modes in MST
STELLGAP calculations of the CAP frequency yield a BAE frequency in
line with observations

fBAE−CAP = 24kHz
fBAE ,0 = 16kHz

q0 = 0.2
s = 0.25

nisl = 5
w = 10cm
fA = 740kHz
r0 = 10cm

These values give fBAE = fBAE ,0

√
1+

q2
0s2n2

isl w2f 2
A

4r2
0 f 2

BAE−CAP
= 64kHz .



Zonca’s model for the BAE-CAP frequency also gives
consistent predictions

fBAE−CAP =
1

2πR0

√
2Ti
mi

(
7
4 +

Te
Ti

)
= 32kHz

fBAE ,0 = 24kHz
q0 = 0.2
s = 0.25

nisl = 5
w = 10cm
fA = 740kHz
r0 = 10cm

These values give fBAE = fBAE ,0

√
1+

q2
0s2n2

isl w2f 2
A

4r2
0 f 2

BAE−CAP
= 73kHz .



SIESTA can be used to predict the Alfven spectrum in the
presence of an island

The Hessian from SIESTA can be used to solve for the full MHD
spectrum for an equilibrium
The inertia matrix T still needs to be computed to account for the
mass density
The generalized eigenvalue problem looks as follows:

Hξ =−ω
2T ξ

H =
∂F
∂ξ

=−∂ 2W
∂ξ 2



Summary and future work

A topologically-toroidal VMEC MST equilibrium does not give
STELLGAP predictions in line with experiment
The magnetic island present in MST may explain the observed Alfven
mode frequency
SIESTA equilibria for MST will be used to study this numerically
This will serve as useful validation for the theory of the Alfven
spectrum in the presence of an island and an interesting application
for SIESTA
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Bonus slide: spectrum for large eccentricity case



Solution outside the separatrix
Next let’s look at the asymptotic regime far outside the separatrix, that is
a flux surface satisfying A/Ψ∗ << 1. Rewriting the general equation in
terms of α and employing a Taylor expansion in our small parameter
A/Ψ∗, we can obtain(

1+
3A
2Ψ∗

cosn0α

)
d

dα

[(
1+

3A
2Ψ∗

cosn0α

)
d

dα
Y
]

+
ρω2√g2

2Ψ∗q′0

(
1+

2A
Ψ∗

cosn0α

)
Y = 0.

In order to make analytical progress, we make a substitution of variables
using the following definition:

d
dv =

(
1+

3A
2Ψ∗

cosn0α

)
d

dα
,

n0v = n0α− 3A
2Ψ∗

sinn0α.



Solution outside the separatrix (cont’d)
The differential equation can now be rewritten in terms of z , using the
substitution n0v = 2z , resulting in a Mathieu’s equation:

d2Y
dz2 +

2ρω2√g2

q′0Ψ∗n2
0

[
1+

2A
Ψ∗

cos2z
]

Y = 0.

Comparison to the canonical form of Mathieu’s differential equation,

d2Y
dz2 + [a−2b cos2z ]Y = 0,

results in the identifications

a =
2ρω2√g2

q′0Ψ∗n2
0

,

b =
−2ρω2√g2

q′0Ψ∗n2
0

A
Ψ∗

.



Solution outside the separatrix (cont’d)

For a given nonzero value of b, the Mathieu functions that satisfy the
differential equation are only periodic in z for certain values of a
corresponding to an integer k. The lowest Mathieu characteristic pair
(k = 1) defines the island-induced Alfvén gap. The functional form for
a (b) for the two characteristics of k = 1 with |b|<< 1 and b < 0 is given
by

a (b) = 1±b.

Substituting the values for a and b, one obtains

2ρω2√g2

q′0Ψ∗n2
0

= 1±
2ρω2√g2

q′0Ψ∗n2
0

A
Ψ∗

.



Solution outside the separatrix (cont’d)

Thus to zeroth order, we have ω2
0 = q′0n2

0Ψ∗/2ρ
√g2. Using this and

working to first order in A/Ψ∗ results in the final expression for the
island-induced Alfvén eigenmode (IAE) gap in the frequency spectrum far
outside the separatrix:

ω
2
± =

|q′0|Ψ∗n2
0

2µ0ρ
√g2

[
1± A

Ψ∗

]
∼ 1

2
∣∣q′0∣∣Ψ∗v2

Ak2
‖ [1± A

Ψ∗
].


