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Complex, interlinked PSI phenomena*
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Figure of merit:
Incident plasma ion flux near divertor strikepoint: 1024 m-2s-1

Steady-state sputtering yield O (104) on surface monolayer (10'° atoms/m?)
results in sputtering of every atom every 0.1 sec -> every atom sputter >108 times/year

* Wirth, Nordlund, Whyte, and Xu, Materials Research Society Bulletin 36 (2011) 216-222



Multiscale modeling capability — a work in progress*

Goal: Discovery science to identify Plasma/neutral
mechanisms/clues to W nanofuzz —
formation and synergies between A
He & H exposure that impact H/D/T 100
permeation & retention

Continuum-
level process

Mechanisms of interest: 103 modeling

sputtering, surface adatom

formation, diffusion, He bubble ] 3.0 ougigion
formation, expansion, rupture %’105 >
Focus on MD (for now) & kinetic g 109
modeling approaches (shortly),
leading to a large-scale continuum- 12)
level reaction-diffusion code for 8
plasma materials interactions
10-15 ot >
109 106 103 100
Biggest long-term scientific Lengthscale (m)

challenge is understanding the kinetics of coupled defect —
impurity evolution with a disparate range of kinetic rates

* Whyte & Wirth, unpublished




W Surface dynamics under combined thermal/particle fluxes
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Proposed W fuzz formation mechanism*

- Sub surface He bubbles drive ‘finger’ instability

(a) 3000 1 » > NAGDIS-I|, 2006 [11] < NAGDIS-Il (un-published) |-
| ¥ 7 PISCES-B, 2008 [4] < NAGDIS-Il, 2003 [14]
| ® O NAGDIS-I, 2009 [7] ¢ NAGDIS-Il, 2004 [13]
| ® NAGDIS-II, 2009 [9] O NAGDIS-II, 2007 [8]
Ol A A NAGDIS-I, 2008 [12] < NAGDIS-II, 2005 [15]
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* Kajita, Nuclear Fusion 49 (2009) 095005.



Proposed W fuzz formation mechanism*
- W ‘viscosity’ drives transport from below bubble layer driving fuzz
growth (a) ~ \Hc/ (b) (¢) growing
He growing \ "/ F..] bubble
Ly | bubble \\" v
J .l YA 3 )
’ . viscose | O\R, V“r__ _(93
flow of W' G I 5, :‘(,_.:")“
™

growing

bubbles
A A e O
base S. I. Krasheninnikov*
N B LD B L
Fig. 2. Schematic views of: (a) mnitial stage of the fiber growth: (b) developed fiber: (c) viscose
flow of W to the tip of the fiber due to the force caused by the pressure of the He in the growing
fiber.
2

Fc =PyenRf. @
where Py 1s the helium pressure in the bubble of radius R¢, which we will assume to be large
the thickness of the fiber “skin”, &¢. Helium pressure in the growing bubble can be estimated as

3)

Pre ~2v/Ry.
where v 1s the tungsten surface tension coefficient.
As a result, the magnitude of the stress in the “skin™ can be evaluated as
Fc 2"{
~ e 4
%0~ 2R o, 205 ®
Then substituting expression (4) in Eq. (1) we have
dogg  Op Vw
= 2 oy 5
Y; L Uy 6% ; (5)
where Ly 1s the length of the fiber and Vyy 1s the flow velocity of tungsten (see Fig. 2c). Then
taking into account that dL¢/dt = Vyy from Eq. (5) we find:
(6)

2
Le(t) = Ji’ft .
Wy

* Krasheninnikov, Physica Scripta T145 (2011) 014040



MD simulations: sub-surface He bubbles

- Evolution of He bubbles below surface: initial nucleation &
growth requires a kinetic model (in progress based on learning
from MD simulations)

+ Evolution of larger He bubbles -> several regimes of interest:
- Equilibrium bubbles (internal gas pressure P = 2y/R)
- Over-pressurized bubbles can ‘punch loops’
(P = 2y/R + Gb/R)
- Near-surface, over-pressurized bubbles can rupture

How do these processes influence surface topology
evolution, sputtering, etc. & can sub-sputtering threshold
He exposure drive surface evolution processes?
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Time step 200 Time step 1000 —— Time step 190
37fs 41fs
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Atomistic investigation of early stage He bubble evolution

o Tungsten with (1 00) surface Probability Distribution of He depth
* Periodic conditions in the x, y
directions and Free Surface in z

2.00E-02

 Every 10 ps a He atom is added
according to the He depth
distribution of 60eV He flux
calculated using the SRIM program
(Stopping and Range of Ions in
Matter)

 Temperatures of S00K, 1200K and
2000K S

1.00E+00
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Depth in Angstroms

Cumulative Distribution of He Depth

* 10 simulations for each temperature

* = Quantify He depth and cluster
size distributions as a function of

time (correlated to the number of
added He atoms)
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Atomistic investigation
of early stage He
bubble evolution

He accumulation at 1200 K,

‘Thermal’ He introduced every
10 ps (very large flux acceleration)

500 He corresponds to ~10'° He/m?
~65% of He retained

* Initially small He clusters are
mobile and grow through cluster
coalescence, until reaching size of

5-8, at which trap mutation occurs

* Growth to larger size by absorbing
single He and small mobile clusters

/’//‘\
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He retention & depth distribution
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Percentage of Retained He for (100) surface
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W surface evolution — (100) surface at 500 K

After 100 He insertion 200 He 300 He _400 I-!e
500 He 600 He 700 He 800 He
i i insertions i i i i

—> Single ad-atom as well as “islands” of ad-atoms accumulation above surface




He Implanted in Tungsten w grain boundary

Top view of box at the end of simulations-after 800 He insertions
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N %He in clusters of sizes between 76 and 100
[ %He in clusters of sizes between 51 and 75
I %He in clusters of sizes between 26 and 50
Il %He in clusters of sizes between 16 and 25
3 %He in clusters of sizes between 8 and 15
B %He in clusters of sizes between 2 and 7

Il %Single He

EEl %He in clusters of sizes over 100




He cluster distribution after 800 He insertions

a. (100) Surface

% of Helium in Clusters

=> Grain boundary plane attracts Helium leading to smaller more

% of Helium in Clusters

100

b. (310) Surface

numerous clusters than with single crystals

—> Ad-atom islands accumulate, particularly in single crystal cases
—> Temperature dependence not clear at these timescales

a. (100) Surface

% of Helium in Clusters
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Later stages of bubble growth: 1.(100) Surface at 2000 K

Before bubble burst

(after 5300 He insertions)

- 38% of inserted He is

retained
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- Only 6% He retained
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Later stages : 2. Grain Boundary Surface at 2000 K

S 2T LBV Y -3
800 insertions *3900 4500 4600 insertions
insertions insertions
Side grain boundary bubble bursts Middle grain boundary bubble

and empties out bursts and empties out



W adatom formation & surface roughness

Tungsten atoms on or above 1rst level for (100) surface
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The higher T, the less ordered the surface 0
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Pressure evolution of He bubbles: from equilibrium to burst

* Objective: Using MD, characterize the He density threshold at
which a preexisting bubble pops the surface

W surface He escapes

deformation the bulk Bubble bursts
He escapes from the bulk
The W “crater” stays in place
Permanent damage (MD timescales)
No W erosion
d
->
Parameters: d=2 a, R=5a,
500 d=3 a, i
1200 d=5 a_=R ’ 30 a,

2000 d=10 a,=2R



Pressure evolution of He bubbles

Molecular dynamics simulations to assess He bubble pressure & response of over-
pressurized, sub-surface bubbles (R = 1.6 nm)

¢ Equ |I| brium bUbee and |00p punChing Ackland-Thetford W-W, Henriksson W-He,
Beck He-He
Future studies with other potentials

Equation of state (woifer 1983

RS 2, aawvaancies P BC results at T=500K
P..=7/2R Equilibrium Loop Punching
L, R=5 R=
=5a, =5a,
# He in bubble | 497 1 234 ) )
HelV ratio 143 118 0969 W at 500K 7 3 (P
2,=3.17045A &/ &/
He/V=1.43 He/V=2.73
=7 /2R+ u b/R
Temperature <P >=0 «—><P_>=9 102 bars <P,>=7 10 bars
<Pe9,;,>=5.0 10* bars <Ploopy >=2.1 10° bars
# He in bubble 2754 2610 PV/R=3 7 10* bars PA/RHIB/R =3.9 105 bars
He/V ratio 273 2.65 253
) ) ) 7 :surface tension
» # He is derived from the EOS of He using R: radius of bubble
2 b b: burger’s vector
P =27/R and p_ e A el ,;g "
"R R U : shear modulus

» Compute pressure of He in bubble, Py}, and pressure of W
in the bulk Pbu].k o)
2 wb

» Compare Py ;. and P, ;=27 /R and then with P,,,, =
q R R
» Compare P, j, and P,



Pressure evolution of He bubbles

- He bubble close to the surface will burst if the pressure is “too high”
- lead to cratering but no W erosion observed (MD timescales)
- Dependent on distance below surface, size, P, T

Bubble stability as a function of d, depth 4

d=2a, stable bursts

stable bursts

------ 60 ps

- d< R — bubble bursts for He/V < He/Vloop
-d=R=35a, ;-
Number of He for P2VR+uR js 3787 and He/V=3.63 | |

|

63 ps ‘

Number of He for bursting is 4025 and He/V=3.85 | |

(4025-3727)/3727 = 6% discrepancy in number of R
heliums between loop punching pressure and bubble T
bursting s | (\

- d=2 R =10 ay — bulk behavior (no surface effect) |

movie



Pressure evolution of He bubbles

T=500K, (100) surface, R=5a0

Snapshots of a bubble rupturing with d=5a,,

Maping of Bubble Stability at 500K
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Preliminary simulation with 90%H , 109%He at 1200K
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- Significant He/H
clustering

* High level of H
retention (~68%)
* Increased He
retention (~90%

versus 68% w/o H)




90%H-10%He Depth distribution after 2000 insertions
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Hydrogen depth cumulative distribution after 2000 H/He insertions
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- Hydrogen saturation layer
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depth
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Temperature dependence of surface evolution

Top layer (atoms above z=0) W in grey and H in green

2000 atoms

1000 atoms

500 atoms

- Mixed (90% H/10% He) plasma exposure conditions at 2000 K, showing

144

(13

rapid surface topology changes yet no ad-atom “islands



2000K Surface at 3000 insertions of 90%H/10%He

Top layer (z<0) .

.o .rrf .:°:°o
.%. .‘; ne"‘. .:;‘no
o. : :000 0:0’ s$ .0.
o |o® .’ 0. %
# PRAE P
N ’ o.': : .'o.
< 4 .




W fuzz formation mechanism(s)

- Formation mechanism remains unresolved — developing kinetic models
to predict He bubble R, N & P as a function of He exposure conditions &
models for W defect/loop/surface adatom diffusion to model both bubble
formation, evolution & topology changes

- Key uncertainties: He diffusion through defected surface
regions, bubble nucleation versus He absorption at over-pressurized
bubbles, influence of temperature/stress gradients

- What happens to displaced W atoms — induce W surface
instability (@) B ‘

- MD simulations do not indicate
any effect of sub-surface

He bubbles on W sputtering
yields do to He ion irradiation

* Kajita, Nuclear Fusion 49 (2009) 095005.



Spatially-dependent cluster dynamics model

° DlmenSIonallty time= 25209 sec ; temperature= 239 °C; implantation is: OFF  log10( appm conc

1 spatial dim.: x, non-uniform grids
1 temporal dim.: t, non-uniform grids
1.5 phase-space dims: He#, V(I)#
» What kind of transitions?

..
n w

_.
=
L —
& 4 b b & o H - o -

-
N
)

Vacancy Number
5]

B o N S o] (<]

- Capturing:
. . M
including bubble Y, % e w w W
coalescence Depth [nm]

- Dissociating: single He, V, |, only

Calculations can involve > 107 coupled

» £ A JLV reaction — diffusion differential equations
o = ___:|:| — utilize parallel solvers (PARDISO)
vyt ie) a[He]
” ; ~+dissoc._rate(He, V' )+ He_kickout_rate(HeV) + mplan _rate
He X
#

-Self_trap_rate - He. trap_rate(He V' )- annihilation by dissociation




PARASPACE Model construction

How to describe the rates?

R, ,,=k,, [Cl][C2]; k, ,= 47(r + 1, )(D1 + D, ) (xBias, if both interstitial type)

v, =n"r By
)= u Ky = o D =D,exp(-E, /k,T)

« dissociation: C3—C1+C2;
R = k—[C3]; K- = k+,1,2coexP(' E, yin3 /kBT)

Boundary conditions (BC)
black BC, i.e., all concentrations are zero on the surfaces

N - - . . - X (C[xn+1 —C;C") _ (Cl_xn _Cixn—l)
Spatial derivative (finite difference) °C" .=,
ox* (X1 = %,1)/2

Parallel, large sparse-matrix linear solver (PARDISO) using open-MP
formalism and backward difference time integration - easily treat
systems with 107 degrees of freedom




Low energy He implantation of W

Typlcal experiments: 100-500 eV He 7 mm Helium range pdf for 100 eV irradiation
ey /f'\\\
— W o/ o
— o L \

=1/ .

003 [ \\
E(He) < Sputtering > ° ‘ : '
Threshold Energy (~500 6V) o * pepniom

Coupled, 1-dimensional reaction-diffusion model:

9 o 92,
ot Y T PG

(x,t) + P;(x) — Loss at sinks + Reaction + Dissociation

Species considered are Helium, vacancies, interstitials and
their clusters, denoted by He, VI,



Low energy He implantation of W

- Helium-Helium Interactions Helium — Vacancy Interactions

“. Defect evolution by trap mutation reaction:
- v

o
®




Helium flux (#/nm2/sec

Low energy He implantation of W
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Concentration of 12-Helium clusters

7.00E-08

0.01

Predicted evolution of He clusters below surface during ‘irradiation’

12-Helium clusters Concentration - Depth = 1.5 nm
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Predicted release of He from surface during thermal annealing

Summary of experimentally observed release
peaks following 250 eV He into W

Peak Mye Trhps (K) Assigned reaction

H 1 1520 VHe-»V+He

G 2 1220 VHe,— VHe + He

Fz 3 1130 VHc;—o Vch-i-Hc

F, 4 1080 VHe,—»VHe,+He

E 5-9 960 VHe, — VHe,+(n —4)He

A. van Veen, Materials Sci. Forum 15-18, 3 (1987)



Summary & Future Challenges

- Initial steps towards discovery science to provide mechanistic
understanding of W surface dynamics & to integrate with experimental

efforts

- Discovery of surface topological changes (ad-atom, loop
punching, bursting) & He bubble evolution regimes through MD
studies

- Successful initial modeling of longer term, desorption behavior of He
following implantation into W

- No influence of sub-surface He bubbles on He-ion sputtering of
W (not shown here, Aachen PSI, in press JNM)



Plasma Surface Interactions (PSI1): Bridging
from the Surface to the Micron Frontier
through Leadership Class Computing

Institution (Lead) | Principal Investigator (Lead) |Additional Personnel
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Multiscale modeling approach for SciDac

- Integrated team of computer scientists, plasma edge physics and materials scientists
to simultaneously address multiscale plasma surface interaction challenges with a ‘bottom-

up’ and ‘top-down’ approach

Time Scale

Key materials physics questions:
* What physical parameters control near-surface
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Length Scale

+ Feedback effects of evolving structure

Key computer science questions:

+ Scalable algebraic and geometric multigrid methods for reaction-diffusion type problems and more
efficient coupled ODE integrators

« Forward uncertainty propagation, inverse modeling and parameter estimation, linking information
and uncertainties across scales

+ Dynamic performance about data collection, abstractions and tools for performance portability, and
resilience

+ Improvements in visualization/data management from computer simulations



Solid Surface Modeling Roadmap

Key Physics Questions:
Rate effects (AMD, MD and KMC) versus continuum reaction-diffusion & experiment
Dilute limit approximations in concentrated He bubble populations
Biased/drift diffusion (elastic strain field interactions that add drift term to diffusional flux)

Multiscale integration

(Additional) collective phenomena

Low temperature (< ~1000 K) regime of low-energy (~100 eV)
He (later mixed He-H) plasma exposure to tungsten, focused on bubble formation,
growth & over-pressurization leading to tungsten surface morphology changes

Dilute limit (?) (mixed species, higher T, etc.) >
D'f;‘:i?,lon “Integrated bubble £ 9 é
aggregation 9vo|ut|on mo_dellng & i s 2 S
theory Inter-comparison S § = ® © | Eventual development
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Comparison with | 1y hple bursting, drift- S528E/ 8%
data =what =} it ision) S5228%| €9
Aobservables? Osascs| OL

\L Parametric
studies

Paraspace (initially) - XOLOTL-PSI

@ Both input

(multiscale linking)
& comparisons of predictions

MD/AMD/KMC

Near surface to bulk
—> matching <——




He bubble influence on sputtering

Sputtering observed in PISCES is generally lower then in ion-
based accelerator studies. Hypothesis that bubbles and voids
formed in PISCES might be the underlying reason behind this
difference.

- MD simulations to see if this hypothesis is supported by
modeling

Conditions of the simulation
« T=293K
Tungsten: 2 different W surfaces (100) and (110)
Bubbles: - fill 15% void fraction in the tungsten

- placed randomly and R = 1.2 nm

- equilibrium pressure in the bubbles

- closest bubbles are 1.5 nm from the surface
He ions: - 300eV, 400¢eV, 500eV, 600eV and 1keV

- flux =10%’ He/(m?-s)

- 30 ps between He atoms
* Runs: averages over 10 runs with 100 incoming He
* Comparison of benchmark, simulations with no bubbles,
to simulations with bubbles

< W end — W initial> > number of sputtered W for 100 incoming He atoms




He bubble influence on sputtering

Sputtered yield (W atoms / He atom)
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He bubble influence on sputtering
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- MD simulations generally consistent with experiment
« Sputtering yields higher on (110) than (100) surfaces, but no significant effect of
sub-surface He bubbles



Evaluating He-H
exposure conditions

- Early stage evolution
with 90%H-10% He at
1200K




