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ELM Control via 3D Fields is an Important Issue for ITER 

•   ELMs can be damaging to in-vessel components 
–   CFC and tungsten material limits ⇒WELM at the divertor ≤1 MJ 

•   Present Scaling ⇒ ~0.15Wped ⇒ 15-20x over limits   (ITER Wped = 100-130 MJ) 

•   Control via reducing ∇P through 3D Resonant Magnetic Perturbations 

3 Rows at 
9 Toroidal 
Locations 

ITER ELM Control Coils Goal: Generate 3D field that is pitch-
aligned to the edge equilibrium field 
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Role of Plasma Response Key to Understanding 3D Fields 

•   Vacuum modeling can describe aspects of 3D 
plasma response 
–   Islands in Limited Ohmic; Strike-point Splitting in 

diverted H-mode, resonance in ELM-suppression 
–   What about in H-mode pedestal? 

Split Manifolds 

Stochastic 
Region 

Islands 

I-Coils 

δB 

δB 
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Role of Plasma Response Key to Understanding 3D Fields 

•   Vacuum modeling can describe aspects of 3D 
plasma response 
–   Islands in Limited Ohmic; Strike-point Splitting in 

diverted H-mode, resonance in ELM-suppression 

•   Extended MHD offers approach to modify 
vacuum model 
–   Two-fluid resistive MHD (M3D-C1 code): partial 

resonant screening (islands) + non-resonant 
amplification (kinking), key: ωe,⊥ 

•   Key questions:  
–   Where can vacuum modeling be applied? 
–   Which key physics govern plasma response? 
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Goal: Validate Models with new measurements – 
Tangential SXR Imaging in X-point Region 
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Outline 

•   Potential model describes RMP ELM suppression on DIII-D invoking 
two-fluid resistive MHD 
–   Measurements needed to challenge/verify assumptions 

•   Tangential SXR camera in X-point region exploits flux expansion 
to measure topological changes from RMPs 
–   Filtered emission offers effective radial discrimination 
–   Differential Imaging used to isolate response 

•   Radially resolved measurements of plasma response through 
forward modeling of SXR Imaging: 
–   Lobes extending from the unperturbed separatrix at plasma 

boundary agrees well with vacuum 
–   Helical displacements in the steep-gradient region inside the 

unperturbed separatrix matching with M3D-C1 (two-fluid MHD) 

•   Future & Summary 
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•  In non-RMP H-mode, pedestal 
continues to expand until ELM is 
encountered 

Emerging Model for RMP ELM Suppression  

Wade, IAEA 2012 
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Emerging Model for RMP ELM Suppression  

•  In non-RMP H-mode, pedestal 
continues to expand until ELM is 
encountered 

–  Consistent with EPED1 model* 

 

*Synder et al. POP 2012 Wade, IAEA 2012 
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ELM crash 
& Recovery 

Wade, IAEA 2012 
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Emerging Model for RMP ELM Suppression  

•  With RMP, P-B boundary isn’t met •  In non-RMP H-mode, pedestal 
continues to expand until ELM is 
encountered 

–  Consistent with EPED1 model* 

 

*Synder et al. POP 2012 Wade, IAEA 2012 
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Emerging Model for RMP ELM Suppression  

•  With RMP, P-B boundary isn’t met 
–  Model: MHD response at top of 

pedestal enhances transport 
and stops pedestal expansion 

 
 

•  In non-RMP H-mode, pedestal 
continues to expand until ELM is 
encountered 

–  Consistent with EPED1 model* 

 

*Synder et al. POP 2012 

“Barrier” 

Wade, IAEA 2012 
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Emerging Model for RMP ELM Suppression  

•  With RMP, P-B boundary isn’t met 
–  Model: MHD response at top of 

pedestal enhances transport 
and stops pedestal expansion 

 
 

*Synder et al. POP 2012 

“Barrier” 

•  Two-Fluid MHD can indicate island 
formation at pedestal top 

 

Wade, IAEA 2012 
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Single Fluid Resistive MHD Predicts Shielding Currents on 
Rational Surfaces Depending on Rotation 

•   In vacuum model, large islands 
generated in edge region 

•   Applied field shielded by image 
currents on rational surface if: 

–   Resistivity is small (true 
everywhere but edge) 

–   Sufficient plasma rotation 

 

w ∼
�
δBm,n

Wade, IAEA 2012 
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Two-Fluid Resistive MHD Plasma Response Depends on ω⊥,e  

•   In vacuum model, large islands 
generated in edge region 

•   Applied field shielded by image 
currents on rational surface if: 

–   Resistivity is small (true 
everywhere but edge) 

–   Sufficient plasma rotation 

•   Fields can “penetrate” at low 
perpendicular electron frequency* 

	

ω⊥,e = ωExB + ωe,dia 

w ∼
�
δBm,n

Wade, IAEA 2012 *Ferraro et al. POP 2012 
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Two-Fluid Resistive MHD Plasma Response Depends on ω⊥,e  

•   In vacuum model, large islands 
generated in edge region 

•   Applied field shielded by image 
currents on rational surface if: 

–   Resistivity is small (true 
everywhere but edge) 

–   Sufficient plasma rotation 

•   Fields can “penetrate” at low 
perpendicular electron frequency* 

	

ω⊥,e = ωExB + ωe,dia 

•   2-Fluid model predicts larger islands 
at top of pedestal 

–   Possible Mechanism? 

 

w ∼
�
δBm,n

Wade, IAEA 2012 *Ferraro et al. POP 2012 
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Counter-NBI Provides Compelling Test of Importance 
of |ω⊥,e| at Top of Pedestal in ELM Suppression 

•   ELMs remain in counter-NBI 
q95 ELM suppression window 
typically seen with co-NBI 

Wade, IAEA 2012 
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Goal of Measurements: Target Radial Regions to Test 
Validity of Vacuum vs. Two-Fluid 

•   Edge/SOL – should be vacuum 
•   Steep gradient – vacuum vs. screening? 

–   Kinking vs islands? 

•   Top of Pedestal… (not there yet) 
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Outline 

•   Potential model describes RMP ELM suppression on DIII-D invoking 
two-fluid resistive MHD 
–   Measurements needed to challenge/verify assumptions 

•   Tangential SXR camera in X-point region exploits flux expansion 
to measure topological changes from RMPs 
–   Filtered emission offers effective radial discrimination 
–   Differential Imaging used to isolate response 

•   Radially resolved measurements of plasma response through 
forward modeling of SXR Imaging: 
–   Lobes extending from the unperturbed separatrix at plasma 

boundary agrees well with vacuum 
–   Helical displacements in the steep-gradient region inside the 

unperturbed separatrix matching with M3D-C1 (two-fluid MHD) 

•   Future & Summary 
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Basis of Measurement Motivated by Core Tangential 
SXR Systems from Many Machines: PBX-M to LHD 

•   Systems used to image core islands* 
•   Adapted to X-point region diverted H-Mode 

–   Flux expansion ~ 10:1 

•   Columnar CsI:Tl ⇒ 35 ph/keV X-ray, ~15 lp/mm, linear energy resp. 
•   Camera: 16-bit sCMOS	



Columnar CsI:Tl 
scintillator 

Pinhole & 
cut-off foil 

Fast lenses: 
imaging & coupling 

Radiation-
Shielded, 

sCMOS camera 

Coherent 
Fiber-bundle 
~50 lp/mm 

*Ohdachi, et al. Plasma Science Tech. (2006) 

DIII-D Cross  
Section 

Modeled 
Emission 
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Pinhole SXR Camera Exploits Flux Expansion at X-Point 
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Pinhole SXR Camera Exploits Flux Expansion at X-Point 
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Different Metallic Filters Provide Radial Discrimination 

1. SXR: Ec,10% ~ 500 eV è steep gradient region 
–   Beryllium (5μm) 

2. USXR: Ec,10% ~ 40eV è extended to Edge/SOL 
–   Al-coated (0.05 μm ) Parylene-N (0.1 μm) 

•   Simulated spectra to model SXR/USXR profile 

–   CHIANTI* astro code & measured ne, Te, nz  

*Landi E. et al 2012 ApJ 744 99 
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n=3 RMP Phase Modulation Used to Isolate Response 

•    Standard DIII-D RMP ELM-suppression plasmas with alternating 
n=3 phases by 60 degrees 
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Out-of-Phase Differential Images Isolate Response 
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Outline 

•   Potential model describes RMP ELM suppression on DIII-D invoking 
two-fluid resistive MHD 
–   Measurements needed to challenge/verify assumptions 

•   Tangential SXR camera in X-point region exploits flux expansion 
to measure topological changes from RMPs 
–   Filtered emission offers effective radial discrimination 
–   Differential Imaging used to isolate response 

•   Radially resolved measurements of plasma response through 
forward modeling of SXR Imaging: 
–   Lobes extending from the unperturbed separatrix at plasma 

boundary agrees well with vacuum 
–   Helical displacements in the steep-gradient region inside the 

unperturbed separatrix matching with M3D-C1 (two-fluid MHD) 

•   Future & Summary 
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Goal of Measurements: Target Radial Regions to Test 
Validity of Vacuum vs. Two-Fluid 

•   Edge/SOL – should be vacuum 
•   Steep gradient – vacuum vs. screening? 

–   Kinking vs islands? 

•   Top of Pedestal… (not there yet) 
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Local Vacuum Response in USXR via Forward Modeling 

•   Synthetic model assumes emission constant along field lines 
–   Map 1D profile in 3D based on ψn,min of FL via TRIP3D-MAFOT code 
–   Convolution filtering for diagnostic response 
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Local Vacuum Displacement in USXR via Forward Modeling 

•   Synthetic model assumes emission constant along field lines 
–   Map 1D profile in 3D based on ψn,min of FL via TRIP3D-MAFOT code 
–   Convolution filtering for diagnostic response 
–   Subtract out-of-phase φ for local displacement 
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Local Vacuum Displacement in USXR via Forward Modeling 

•   Synthetic model assumes emission constant along field lines 
–   Map 1D profile in 3D based on ψn,min of FL via TRIP3D-MAFOT code 
–   Convolution filtering for diagnostic response 
–   Subtract out-of-phase φ for local displacement 

•   Apply line-integral 
    effects to compare  
    directly to differential 
    images 

 

Realistic 
Dynamic Range 

1.0


Split Manifold / Lobes 
Z (m)


R (m)




38 
MW Shafer/ORNL-FEST/November 2012 

Vacuum-Predicted Lobes Observed in Data 

•   Synthetic diagnostic modeling used to identify lobe structures in 
measurement* 
–   Well matched features: gross lobe structure, line-integral effects 

 
•   Linear M3D-C1: Te and ne still too low in lobes for USXR modeling 
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*M.W. Shafer, Nucl. Fusion 2012 
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q95 Ramp Applied to Change Resonance with Lobes  

•   Lobes expected to “rotate” poloidally downward on high-field 
side in one toroidal plane; stationary on low-field side 1.0 1.2 1.4 1.6 1.8

R (m)

-1.4

-1.2

-1.0

-0.8

-0.6

Z 
(m

)

60o  n=3 Phase
0o n=3 Phase
q95 = 3.66

(a)

1.0 1.2 1.4 1.6 1.8
R (m)

-1.4

-1.2

-1.0

-0.8

-0.6

Z 
(m

)

(b)

147179

q95 = 3.66
q95 = 3.46
q95 = 3.38

*M.W. Shafer, Nucl. Fusion 2012 



40 
MW Shafer/ORNL-FEST/November 2012 

Movie: Differential Images w/ q95 Ramp 
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Lobe Dependence on q95 Matches well to Vacuum 
Predictions 

•   Intersection w/ unperturbed 
separatrix tracked 
–   Simple “pattern recognition” 

algorithm based on Laplacian 
(1st derivative) of image  

•   LFS to HFS asymmetry in lobe 
location vs q seen 
–   Strong plasma shaping, coil 

feedback, q-shear contribute 
to observation 

i = 31

Model Model

i = 25

q95 = 3.66 q95 = 3.46 

Data Data 

*M.W. Shafer, Nucl. Fusion 2012 
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Lobe Dependence on q95 Matches well to Vacuum 
Predictions 

*M.W. Shafer, Nucl. Fusion 2012 
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•   Intersection w/ unperturbed 
separatrix tracked 
–   Simple “pattern recognition” 

algorithm based on Laplacian 
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•   LFS to HFS asymmetry in lobe 
location vs q seen 
–   Strong plasma shaping, coil 
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Lobe Dependence on q95 Matches well to Vacuum 
Predictions 

*M.W. Shafer, Nucl. Fusion 2012 
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•   Intersection w/ unperturbed 
separatrix tracked 
–   Simple “pattern recognition” 

algorithm based on Laplacian 
(1st derivative) of image  

•   LFS to HFS asymmetry in lobe 
location vs q seen 
–   Strong plasma shaping, coil 

feedback, q-shear contribute 
to observation 

•   Yet to determine effects of 
screening/plasma 
response on lobe structure 
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Modeling of MAST X-Point Imaging Suggests Partial RMP 
Screening  

•    Forward modeling of X-point images (He II emission) required x3 
reduction in applied RMP current to match data 
–   Lobe length relates to level of stochasticity inside unperturbed separatrix 
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Goal of Measurements: Target Radial Regions to Test 
Validity of Vacuum vs. Two-Fluid 

•   Edge/SOL – matches well to vacuum 
•   Steep gradient – vacuum vs. screening? 

–   Kinking vs islands? 

•   Top of Pedestal… (not there yet) 
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Goal of Measurements: Target Radial Regions to Test 
Validity of Vacuum vs. Two-Fluid 

•   Edge/SOL – should be vacuum 
•   Steep gradient – vacuum vs. screening? 

–   Kinking vs islands? 

•   Top of Pedestal… (not there yet) 
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Two-Fluid MHD Response via M3D-C1 Code 

•   Resistive, Two-fluid Effects, but linear time-independent calculations 
–   Perturbed Te & ne direct output 

•   SXR: Assume nz ~ ne 

–   Subtract out-of-phase φ for local displacement 
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Two-Fluid MHD Response via M3D-C1 Code 

•   Resistive, Two-fluid Effects, but linear time-independent calculations 
–   Perturbed Te & ne direct output 

•   SXR: Assume nz ~ ne 

–   Subtract out-of-phase φ for local displacement 

•   Large displacement localized in edge  
     near 11/3 – peeling-ballooning-like 
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Two-Fluid MHD Response via M3D-C1 Code 

•   Resistive, Two-fluid Effects, but linear time-independent calculations 
–   Perturbed Te & ne direct output 

•   SXR: Assume nz ~ ne 

–   Subtract out-of-phase φ for local displacement 

•   Large displacement localized in edge  
     near 11/3 – peeling-ballooning-like 
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Predicted Displacement Matches Well with Thomson Te 

•   Perturbation calculated along vertical path of 
Edge Thomson has good agreement with shift in 
Te gradient, ~ 1.5 cm 
–   Same discharge as SXR measurement 

q = 11/3
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Two-Fluid MHD Response via M3D-C1 Code: Filtered SXR 

•   Resistive, Two-fluid Effects, but linear time-independent calculations 
–   Perturbed Te & ne direct output 

•   SXR: Assume nz ~ ne 

–   Subtract out-of-phase φ for local displacement 

•   Large displacement localized in edge  
     near 11/3 – peeling-ballooning-like 
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-1 0 1
Framei - Framei+1 (A.U.)

30:32:34:36:38:40 - 31:33:35:37:39:41

-2 0 2
Framei - Framei+1 (x1e2 cts)

Measured Internal Helical Structure Shows Reasonable 
Agreement with M3D-C1 Calculations 

•   3D internal helical response measured  
–   Poloidally varying field aligned structure 
–   High contrast results from displacement of steep gradient in emission, 

also near steep gradient in pedestal 

Line-Integrated Differential Images 

SXR 

Data 
M3DC1 
Model 
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Inverted Data M3D-C1: SXR MAFOT-Vacuum

Image Inversion Gives Reasonable Agreement with 
M3D-C1 Predicted Displacements 

•   Inversion provides direct measure of ~5-10cm displacements  
–   Philips-Tikhonov regularization, helical symmetry 
–   On-going testing, relatively new capability 

•   Plasma response effects needed to provide better agreement 
–   Vacuum shows smaller internal structure, remnants of lobes 
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But… Linear M3D-C1 Displacement Also Align with 
Scaled Down Island Poincaré Map 

•   Poincaré FL tracing of M3D-C1 with ¼ RMP 
–   FL tracing essentially non-linear ⇒ ¼ RMP shows remnant islands, 

otherwise looks stochastic. 
–   Fluid perturbation is linear ⇒ structure remains the same. 

•   Maximum in emission aligns with Island structure 
–   Is this just resulting from field-aligned structures or islands? 
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Goal of Measurements: Target Radial Regions to Test 
Validity of Vacuum vs. Two-Fluid 

•   Edge/SOL – should be vacuum 
•   Steep gradient – M3D-C1 provides closer match 

–   Kink-like structure most likely 

•   Top of Pedestal… (not there yet) 
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Outline 

•   Potential model describes RMP ELM suppression on DIII-D invoking 
two-fluid resistive MHD 
–   Measurements needed to challenge/verify assumptions 

•   Tangential SXR camera in X-point region exploits flux expansion 
to measure topological changes from RMPs 
–   Filtered emission offers effective radial discrimination 
–   Differential Imaging used to isolate response 

•   Radially resolved measurements of plasma response through 
forward modeling of SXR Imaging: 
–   Lobes extending from the unperturbed separatrix at plasma 

boundary agrees well with vacuum 
–   Helical displacements in the steep-gradient region inside the 

unperturbed separatrix matching with M3D-C1 (two-fluid MHD) 

•   Future & Summary 



58 
MW Shafer/ORNL-FEST/November 2012 

Future: Higher Energy Filter for  Response Near Pedestal Top 

•   Better challenge to RMP ELM suppression model 
–   Higher Energy filter: 1-2 keV allows relative contrast inside pedestal 
–   requires longer integration (x3-10) 
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Summary: Unique New Measurements of Plasma Response 

•   Tangential Imaging of USXR and SXR provide radial discrimination 
of plasma response in RMP ELM-suppressed plasmas 
–   Lobes measured boundary region 
–   Helical displacements measured in steep-gradient region 

•   Plasma response models implications 
–   Vacuum predictions work well in boundary region 

•   Further tests with FL modeling/Inversion to test inward stochasticity 
•   Nonlinear M3D-C1 calculations needed to evaluate response in SOL 

–   Steep gradient measurement requires some plasma response (partial 
screening and kinking) to better match measurement 
•   Self-consistent M3D-C1 solution best match 

•   But Vacuum isn’t too far off: higher-k structure 

•   Emerging RMP ELM suppression model implications 
–   Future experiments targeting pedestal top 

 


