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• D2 pellets injected in ITER configuration 

• 12x increase in fELM with 12x reduction in ELM W

• H factor maintained

• Impurities greatly reduced

DIII-D has Demonstrated Viability of 
Pellet ELM Pacing Mitigation for ITER

Pellets
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ITER ELM size needs to be < 0.7 MJ for low erosion
Implying ELM triggering is needed > 30Hz   if   fELM*W  = Const 

(>30x increase in natural ELM frequency) 

ELM Erosion of the Divertor is an 
Important Issue for ITER

[A. Loarte, et al., IAEA 2010 and ITR/1-2 this conference ]
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 Can pellets be used to trigger frequent 
ELMs on-demand to reduce W?

[Zhitlukhin et al., 
JNM, 2007]
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• New ITER like LFS X-point 
injection line installed on     
DIII-D.

• All 1.3mm pellets from X-
point and Midplane reliably 
trigger ELMs – no fueling.

• HFS 1.3mm pellets trigger 
ELMs, but provide fueling.

DIII-D Pellet ELM Pacing Experiment Performed with D2
Pellets Injected from Low Field Side Midplane and X-point

D3DPI
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~100-150 m/s

(2 mbar-L, 1x1020
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New ITER like
X-point Injection line 

added in 2011

LFS Pellet 
Guide Tube 

x3

ITER

[S. Maruyama, ITR/P5-24]LB/IAEA/Oct12



ELMs Triggered On-demand  by 60 Hz Pellets 
at 12x the Natural ELM Frequency

Pellets

147690
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• ITER shape, N~1.8, q95=3.4

• ELM Pacing demonstrated 
12x the natural ELM rate.

• 60 Hz 1.3mm pellets injected 
from LFS mid (20 Hz), X-pt
(40Hz)  at  100-150 m/s.

• Much lower energy loss 
ELMs observed with the 
pellets.

• Negligible fueling and 
reduction in H-factor 
observed.

• Reduced Ni in the plasma 
core with high rep rate 
pellets, fELM * E > 15.
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• The energy deposited (log scale) in the divertor from the IR 
camera data is significantly lower than the 5 Hz natural ELM case. 

• The energy distribution spread  is somewhat larger for the X-pt
pellets.
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Divertor Heat Load from Pellet Triggered ELMs is 
Significantly Smaller than Natural ELMs
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fELM * W= Const

• The average energy deposited in the divertor per ELM decreases 
with increased pellet frequency.  

• The peak heat flux in the outer divertor is greater than the inner 
divertor. 
− The IR camera data is integrated assuming axisymmetric deposition

Divertor Heat Deposition per ELM Decreases as the 
Pellet Frequency Increases

fELM * qpeak= Const
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Reduction of  Impurities Observed with Pellet ELM Pacing 
– A Function of the Pellet Frequency

• Reduced high-Z 
and lower Z  
impurities during 
pellet ELM pacing.  

• STRAHL 
calculations 
indicate a reduced 
Ni density explains 
reduced emission. 

• Higher frequency 
pellets reduces 
impurity levels.

• Impurities and 
natural ELMs return 
within E .
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All Impurities are Reduced with Pellet ELM Pacing 
as a Function of the Pellet Frequency

• SPRED and CX show a 
reduced impurities with 
pellet ELM pacing.  (Data 
shown from 0.8s after the 
start of pellets)

• Consistent with earlier 
gas puffing results where 
impurities were entrained 
in the divertor with 
enhanced SOL flow.    
[Wade, et al.,  JNM 1999]
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Pellet ELM Pacing Produces a Narrower Pedestal Width

• Total pressure profile from the pellet ELM 
pacing has a narrower pedestal width and 
lower height.   
Note:  Pellet case averaged over 200ms.
− Lower Zeff and higher rotation shear help to 

compensate for lower pedestal pressure.
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Natural ELMs Occur When Pedestal Width Becomes
Unstable to Peeling Ballooning Modes
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ELMing
CasePre-ELM

Post-ELM

Unstable

Stable
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• The boundary for peeling and ballooning stability in this plasma 
configuration is calculated by ELITE  (P. Snyder, NF 2007).
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Pellet ELM Pacing Produces a Narrower Pedestal Width 
- Stable to Peeling Ballooning Modes

• The boundary for peeling and ballooning stability in this plasma 
configuration is calculated by ELITE  (P. Snyder, NF 2007).

• Pellet case is far in stable region, ELMs likely triggered by local 
effect. 
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Fast Camera Images of Pellets Triggering ELMs Show 
Individual Filaments Being Perturbed

• X-point pellet exciting a filament 
as it enters the plasma. ELM is 
subsequently triggered.

• Midplane pellet triggers ELM 
while X-point pellet fragment 
enters plasma.  

147691  - 2142 147691  - 2678

D
Filter

Images consistent with hypothesis of a local ballooning mode 
triggered by pressure gradient in pellet cloud.

Mid

X-pt
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Minimum Pellet Size Needed for ELM Triggering
is Under Investigation

• What are the minimum pellet 
size and speed requirements to 
reliably trigger ELMs ?

• Small fragments and 1mm slow 
pellets do not trigger ELMs.        
≥ 1.3mm  do trigger ELMs. 

• New smaller 0.9x1.3mm pellets 
(~60% of 1.3mm size) also  
trigger ELMs. 

• Non-linear MHD modeling is 
consistent with observations of 
local ballooning instability and 
minimum pellet size.  
[Futatani ITR/P1-22]
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DIII-D  Pellet ELM Pacing Operating Space 
Compared to ITER

• Except for magnetic field and * the operating space on 
DIII-D is comparable to that expected for ITER.  

DIII‐D parameters
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Summary  – DIII-D has Tested Key Principles of Pellet ELM 
Pacing for ITER

• Pellets trigger ELMs on demand with lower X-point  injection.

• ELM frequency increase of 12x achieved with  > 12x reduction in 
divertor ELM energy deposition.

• No confinement degradation

• Impurities screened out

• ELMs triggered locally before pellet reaches pedestal top 
– enables smaller pellets and lower fueling

• Future optimization and extension to higher frequencies with 
smaller pellets is planned.
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