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* [ntroduction and power threshold study
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Procedure of obtaining loss power and

estimation of energy confinement time

- ‘ NBI ,inj. - ECH.,inj rad I:)Ioss

Obtained from Pon=Vsugelp
Veure IS Obtained from Calculation by ASTRA code

EFIT
loop voltage measurement

» Global energy confinement time
2 T :Wstored/ I:)Ioss

= Total stored energy includes both thermal and fast ion components
2 (Wtot: Wthermal+ Wfast)

= W, can be obtained by ASTRA calculation
> TE thermal :WthermaI/PIoss

* No radiation power measurement at present, therefore 10-30 % of
total injected power is taken into account as the radiation power.

ASTRA simulation by H.-S. Kim
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Fast ion component has strong dependence

on densit
0.18
® 5603
e 5606 The beam module in ASTRA
. = 5607 calculates longitudinal (p; ;,s) and

perpendicular (pi¢,s) Pressures
generated by fast ions from NBI

tot

012! Wi =0.8x10°° [ py 0V +1.6x10°[ p, AV

fast

W /W
fast

o

>

0.1

3 35 4 45
fie (10" m™)

» Weiland pedestal model was used to for the ASTRA calculation
2> W, ~10-30% of W,

= W, IS found to be a strong function of density, ie the effect of fast ion
confinement becomes more important in the low density regime

UAK
KS5TAR #‘RIDGE FED Seminar at ORNL, 04/05/12



Power scan yielded P, roll-over as a function

of density
KSTAR in 2010 and 2011 ASDEX-U,Ryter, NF 49 (2009), 062003
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= Power scan by changing NBI duty cycle, ie Pyg=0.7-1.5MW, in order
to find the H-mode power threshold
= Good agreement with 2010 P, data for the left branch
- 2011 data clearly shows the density roll-over and the

presence of minimum power threshold at n, ~2x10*°m-3
J-W. Ahn, submitted to NF
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= Confinement and ELM characteristics of three ELM types
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ELMs appear to be in three distinct regimes 1.:

Large ELMs

= Large, type-1 ELMs
- Low ELM frequency (fg ,,=10-50Hz), large ELM size (An./n,=1-4%), good
confinement quality (Hgg, ») ~1)
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Large ELMs show clear inverse proportionality

between ELM size and frequency

= Large, type-1 ELMs
- Low ELM frequency (fg ,,=10-50Hz), large ELM size (An./n,=1-4%), good
confinement quality (Hgg, ») ~1)
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Large ELMs: ELM frequency increases with

increasing heating power, a behavior of type-I ELMs

oF 5501 ' 5 80
=, B ; (c) | ® 5591, Pxa=1.3MW
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= P INcrease of 0.2MW raises the ELM frequency
—> behavior of Type-I ELMs

= However, the apparent ELM type often changes later during a shot and
also during a run day (ie, type-l - type-Ill). Wall condition matters?
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ELMs appear to be in three distinct regimes 2:

* Intermediate ELMs (type-II1?)
- High ELM frequency (fg ,=50-250Hz), small ELM size (An./n, below 1%,
normally < 0.5%), poorer confinement quality (Hgg, 5= 0.7-0.8)
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do not show clear size and

frequency correlation

* Intermediate ELMs (type-II1?)
- High ELM frequency (fg ,=50-250Hz), small ELM size (An./n, below 1%,
normally < 0.5%), poorer confinement quality (Hgg, 5= 0.7-0.8)
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ELMs appear to be in three distinct regimes 3:

Mixed ELMs

= Mixed (large and small) ELMs
- Low (fg,,=10-50Hz) and high (20-250Hz) ELM frequency, large (1-4% of
An./n,) and small (below 0.5% of An./n.) ELM size, good confinement
quality (Hggy,2) ~1)
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Mixed ELMs: Large ELM peaks are type-l ELMs

High fz m Low fz High fz ;1

= Change of input power was
achieved by NBI modulation
plus ECH injection

* Frequency of large ELM peaks
Increases with increasing input
power = type-1 ELM
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{ = Also, tiny ELM peaks between
large ELMs disappear during
; the lower heating power stage
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= Time delay of 150-200ms is
consistent with NBI slowing
down time and energy
confinement time
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Mixed ELMs: Large and small peaks show

distinctive features from each other

= Mixed (large and small) ELMs
- Low (fg,,=10-50Hz) and high (20-250Hz) ELM frequency, large (1-4% of
An./n,) and small (below 0.5% of An./n.) ELM size, good confinement
quality (Hggy,2) ~1)
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Mixed ELMs: Large ELMs barely obey inverse size-

freqg relation but small ELMs do not follow it

» Size of large ELMs appears to be inversely related with the ELM frequency
although scatter is larger than that for type-I ELMs

= Small ELMs do not have size-frequency correlation
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When does each type of ELMs occur?

= Type-l ELMSs:
- Most common
- Observed in a range of Pg, from 0.8MW to 1.5MW
- Tend to occur in lower density level with 0.35 < n_/ng < 0.45

» Intermediate ELMs (type-IllI?):
- High density appears to lead to this ELM regime more easily
- Tend to occur toward later stage of a shot, between large ELM peaks
(or later shots during a run day, wall condition matters?)
- Wider density range of 0.35 < n./ng < 0.55

= Mixed ELMs (type-l + small ELMSs):
- Often occur in late H-mode as well as in main H-mode
- Wider density range of 0.38 < n./ng < 0.57
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* Profile measurement during the ELM cycle
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T, drop by type-l1 ELM is only on LFS and the

orofile builds up continuously for whole ELM cycle

4 No ECH Separatrix
6336 i
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= Qutboard pedestal T, (and n, from interferometer) continuously builds up through the
whole ELM cycle = continuous pedestal p, rise. No changes on the inboard side

= Estimated electron collisionality for LFS pedestal is v,*=0.5-0.6 with pedestal T, drop
by an ELM ~ 100-200eV
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ECH injection makes the LFS T, drop by an ELM

much bigger than without ECH
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= Qutboard pedestal T, (and n, from interferometer) continuously builds up through the
whole ELM cycle = continuous pedestal p, rise. No changes on the inboard side

= Estimated electron collisionality for LFS pedestal is v,*=0.5-0.6 with pedestal T, drop
by an ELM ~ 100-200eV

= LFS T, drop by an ELM can reach 600-700eV when ECH power is injected, while
HFS T, drop is still very moderate, LFS v *~0.2

= ECHAd esn’ 't make LFS n_ drop much bigger
KSTAR RIDGE FED Seminar at ORNL, 04/05/12 18




T; profile data suggests that ion pressure might

nlay an important role in pedestal ELM stabilit
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= ELM characteristics of RMP ELM suppression
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RMP initially deteriorates confinement but it rises

back up as the ELMs are suppressed
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ELM suppression by
RMP was successfully
achieved in 2011

There are several stages
observed during the RMP
ELM suppression

- Density pump-out
Initially induced, both n,
and W, decrease

- They begin to rise again
after upper and lower
colls are applied

- ELM suppression stage
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Each stage of RMP ELM suppression exhibits

distinctive ELM characteristics

¢ Before RMP ¢ Before RMP ¢ Before RMP
¢ Density pump-out stage ¢ Density pump-out stage * Density pump-out stage
140| ® Transition stage * Transition stage * Transition stage

ELM size, Ane/ne (%)
ELM size, Ane/ne (%)
N

Os5—% =354 25
Time (s)

0 0—20 20 60 80 100120740
ELM frequency (Hz)

= With the beginning of density pump-out stage, ELM size (frequency)
suddenly jumps (drops), i.e. ELMs become ‘intensified’, and then rapidly
decreases (increases) until it reaches the transition stage

* In the transition stage, ELM frequency quickly drops but the size grows only
weakly in time, leading to weak inverse correlation between size and freq.
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Confinement quality initialy drops but recovers with

the achievement of ELM suppression

Density ELM
pump-out suppression
stage stage

Before Transition

RMP stage
2 l| |

I, 4
v

= 16 !
o2 I
o) 1
L 14} ' :
1 1 1
- o I
1 ® ELMs suppressed
® Reference shot
5.5 39 4 45

Time (s)

H-factor rapidly drops during
the density pump-out stage,
similar to the density drop

It slowly increases during the
transition stage and finally
reaches similar level to the
reference case

During the ELM suppression
stage, H-factor behaves
similar to the reference.

J-W. Ahn, submitted to NF
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= Characteristics of late H-mode
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Transition to 2" H-mode in later stage was

observed for some discharges

Main H-mode Late H-mode
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Mixed ELM regime occurs in late H-mode

® Main H-mode, Large ELMs . .
® Late H-mode, Large ELMs » Mixed ELM regime (type-I + small)
® |Late H-mode, Small ELMs .
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X-point movement is opposite to NSTX report for

lower power threshold

120
| o e ke = Mixed ELM regime (type-I + small)
- ™ late ECRH H-modes - Inverse proportionality between ELM
! I size and f, for large ELMs
2 o e - Wider range of Greenwald fraction
h : (0.38 < n /ng < 0.57) than for the
90 ' . !
_ upper x-point positions preceding main H-mode (0.36 < n./ng
. I I R <0.42)
rem » Elongation was noticeably lower (k=1.6-
 late H-modes 1.7) than for the main L-H transition
w0 . B late ECRH H-modes (K:1.8'1.9)
- - Smaller radius and larger height
g o — of X-points
) 17 > Opposite to NSTX result regarding
lower x-point positions dependence of Pthr on RX
TaT T w m A. England, to be submitted to PoP

R (cm)
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H-mode power threshold study yielded roll-over of Py, at n,~2x10°m-3.

Fast ion component of total stored energy becomes more important in low
density regime, therefore in estimation of thermal energy confinement time

Three distinctive ELM types are observed

- Type-lI ELMs: Good confinement quality (H98~1), large ELM size, clear
inverse correlation of ELM size with frequency

- Small ELMs: Poorer confinement (H98=0.7-0.8), very small ELM size, no
size-frequency correlation

- Mixed ELMs: Good confinement quality (H98~1), large and small ELMs,
large ELMs have inverse size-freq. correlation with scatter

RMP initially deteriorates confinement but it rises back up as the ELMs are
suppressed. ELMs exhibit distinctive characteristics in each stage

Unusual late L-H transition occurs but the cause of lowered Py, is yet

unknown. Only mixed ELM regime is observed in wide density range.
OAK
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