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THE "BIG PICTURE"

» Our main goal is to study the basic physics mechanisms that
control turbulence and transport in fusion plasmas

» We are particularly interested in the study of the potential
limitations of current turbulent transport models

» Our methodology rests on synergetic work involving

Transport
Theory

Numerical
Simulations

ﬁ Comparison with

Experiments

» A signature of our approach is the incorporation of novel ideas
and methods from other areas



NON-DIFFUSIVE TRANSPORT THEORY

The work on non-diffusive transport theory is based on ideas
and tools from different areas including:

» non-equilibrium statistical mechanics, stochastic processes,
» non-linear dynamics, complexity theory, data analysis,
fractional calculus, ...
Over the last years we have developed a unifying framework to
study turbulent transport in general, and non-diffusive,
non-local transport in particular.

The key feature is the relaxation of the restrictive assumptions
upon which the standard diffusion formulation is based.

Our methodology is to develop a hierarchy of reduced,
effective models of various levels of complexity that can be
applied to experiments and eventually improve the predictive
capability of existing transport codes.



NUMERICAL METHODS

There is a tendency in the fusion community to identify
computational physics with “big codes” and software
development.

A good amount of work is focused on the linear growth of
codes (i.e. add “more physics”) followed by integration (i.e.,
frameworks)

The ultimate value of big codes rest on predictability. But it
is not clear how to get there (very tough multiscale problem!)
This is an important effort, but is not the whole story.
Adding more and more physics quite often obscures the
physics and compromises discovering and understanding.
Sooner or later this hampers predictability.

The race for bigger codes could also compromise the
development of better, more efficient innovative algorithms
that required small scale proof-of-principle studies.

Bigger codes deliver massive amounts of data which ends up
being underutilized.



» How could theory and numerical method complement the
best?

Data analysis
“Small” codes targeting specific physics: problem driven
computational physics

» Innovative algorithms

DATA ANALYSIS

» Focus more on how to analyze the huge data sets produced by
existing codes, than in the development of bigger codes for
faster machines. Some examples include:

» Use of tensor product decomposition methods to compress and
analyze 6-D gyrokinetic data sets. Hatch, dei-Castilio-Negrete, and Terry.
“Analysis and compression of six-dimensional gyrokinetic datasets using higher order singular value
decomposition.” Submitted to Journal of Computational Physics (2011).

» Use of SVD-type methods for the efficient representation and
com pression Of 3-D MHD dat sets. del-Castillo-Negrete, Hirshman, Spong,
and D'Azevedo: “Compression of magnetohydrodynamic simulation data using singular value

decomposition. J. Comp. Phys., 222, 265 (2007).



» More examples on data analysis methods

» Use of POD methods for multiscale analysis of plasma
tu rbulence. Futatani, Benkadda, and del-Castillo-Negrete: “Spatio-temporal multiscaling
analysis of impurity transport in plasma turbulence using proper orthogonal decomposition. Phys.
of Plasmas, 16, pp. 042506-042506-12 (2009).

» Use of POD and wavelet methods to characterize and extract
coherent structures from turbulence simulations. Futatani, Bos,
del-Castillo-Negrete, Schneider, Benkadda, Farge: “Coherent Vorticity Extraction in Resistive
Drift-wave Turbulence: Comparison of Orthogonal Wavelets versus Proper Orthogonal

Decomposition.” Comptes Rendus Physique, 12, 2, 123-131 (2011).



PHYSICS DRIVEN NUMERICAL METHODS

» Lagrangian-Green's function methods to study highly
anisotropic transport in 3-D chaotic field
del-Castillo-Negrete and Chacon, “Local and nonlocal parallel transport in general magnetic fields.” Phys.

Rev. Letters 106, 19, 195004 (2011).

» Finite-different method to solve integro-differential non-local
transport equations
Lynch, Carreras, del-Castillo-Negrete, Ferreira-Mejias, and Hicks: “Numerical methods for the solution of
partial differential equations of fractional order.” J. Comp. Phys., 192, 2, 406-421 (2003).
del-Castillo-Negrete: “Fractional diffusion models of nonlocal transport.” Phys. of Plasmas 13, 082308

(2006).



INNOVATIVE ALGORITHMS

» Use of POD and wavelet methods to denoise particle-based
codes.
Nguyen, del-Castillo-Negrete, Schneider, Farge, and Chen: “Wavelet-based density estimation for noise
reduction in plasma simulations using particles.” Journal of Comp. Physics 229, 28212839 (2010).
del-Castillo-Negrete, Spong, and Hirshman: “Proper orthogonal decomposition methods for noise reduction

in particle-based transport calculations. Phys. of Plasmas 15, 092308 (2008).

» Lagrangian-Green's function methods and Asymptotic
preserving methods for anisotropic transport.
del-Castillo-Negrete and Chacon, “Parallel heat transport in integrable and chaotic magnetic fields”
APS-DPP Invited paper, submitted to Phys. of Plasmas (2012).
L. Chacon and D. del-Castillo-Negrete, Bulletin of American Physical Society, Abstract ID:

BAPS.2011.DPP.GP9.2. DPP 54th Annual Meeting, GP9 00002, Nov. 2011.

» POD-based projective integration methods for collisional
transport particle codes.



INTERACTION WITH EXPERIMENTS

» Main focus on modeling perturbative transport experiments.

» JET collaboration.
Naulin, Rasmussen, Mantica, del-Castillo-Negrete: “Fast Heat Pulse Propagation by Turbulence
Spreading. J. Plasma Fusion Res. SERIES, Vol. 8, 55 (2009).
del-Castillo-Negrete, Mantica, V. Naulin, Rasmussen: “Fractional diffusion models of non-local
perturbative transport: numerical results and applications to JET experiments.” Nuclear Fusion
48, 75009 (2008).

» LHD collaboration

del-Castillo-Negrete, Tamura, and Inagaki, “Non-local transport modeling of heat transport in the

LHD.” IAEA. Proc. 23nd Int. Conference. Daejon, Rep. f Korea (2010).

» Mid-size experiments like UCLA-LAPD provide a unique
setting to explore basic plasma physics issues.
Maggs, Morales, and del-Castillo Negrete, “Study of wave-driven chaotic advection in a temperature
filament. Submitted to Phys. of Plasmas (2011).

» Application of reduced models of LH transition to Alcator
C-mod
Hubbard, B.A. Carreras, N.P. Basse, D. del-Castillo-Negrete, J.W. Hughes, A. Lynn, E.S. Marmar, D.

Mossessian, P. Phillips, S. Wukitch: Plasma Physics and Controlled Fusion 46, A95 (2004).



NON-DIFFUSIVE TRANSPORT



LOCAL MODELS OF DIFFUSIVE TRANSPORT

*Consider the transport of a single scalar field in one dimension

&r Tz_&x q+S

*According to the standard diffusive paradigm

4, =-Dd.T+VT Diffusion coefficient D= D(x,:;7,0,T)
d x
Velocity pinch V=V(x,1)

J,T+d[VT] = 9, [DI,T] +§
W.J H_/
Convective  Diffusive

transport transport

*Within this framework, the goal of transport modeling is to find V and D based
on theory, numerics and experimental evidence.

*This approach has been quite useful and valuable for the understanding
of transport in fusion plasmas.
However......



LIMITATIONS OF LOCAL MODELS OF
DIFFUSIVE TRANSPORT

*The “V-D” paradigm is a local description that assumes Markovian, Gaussian
statistics, well-defined spatio-temporal transport scales, and absence of long-range
correlations.

*There is experimental, numerical and theoretical evidence that indicates that
these assumptions might be too restrictive.

Signatures of non-diffusive transport

e[agrangian statistics:

=Super-(sub)-diffusive evolution of statistical moments
=Non-Gaussian (heavy tailed, Levy) propagators and PDFs
=Long range correlations

Fast propagation phenomena (e.g., cold pulses)

*Multi-valued, and up-hill flux-gradient relationships

*Non-Gaussian turbulent fluctuations



NONLOCAL MODEL OF NONDIFFUSIVE TRANSPORT

*Over the last several years we have explored the use of alternative spatio-
temporal non-local transport models of the form

qx.)=—y 0. jdx' K(x—x") J.dt‘ W(tl—t') T(x't")
|
* \4

Spatial non-locality Temporal non-locality

*In the models considered here, the selection of the functions K(x-x’) and
W(t-t’) is based on the theory of non-Gaussian, non-Markovian stochastic
processes, and the analytical and numerical framework is based on fractional
calculus.

*A point about the terminology: we do not deem as non-local or non-diffusive
models with:
* Off-diagonal terms, or with “anomalous” terms in the flux gradient relations
*Non-linearly coupled (e.g. reaction-diffusion type) diffusion models

Although these models are interesting, conceptually they are variations of the Fourier-
Ficks’ local prescription



DIFFUSIVE TURBULENT TRANSPORT

Transport of tracers in fully developed, isotropic, homogeneous
(“boring”) turbulence

Statisti ( >=ensemble average

M(t) = (6F) = mean & (1) = F(t) - F(0)
o’(1) = <[57 - <67>]2> — variance
P(67,1) = probability distribution

C(t) = {u(?) (t + 7)) = Velocity Correlation

Transport coefficients

: ‘ Green-Kubo
.M . o(t .
V =lim % x =lim % x =lim fC(T) dt | relation
10 =% 1—% 0
dP+VidP = Xﬁzx P P wmmmp Shifted Gaussian
' ! distribution




NONDIFFUSIVE TRANSPORT AND COHERENT STRUCTURES

Chaotic transport by Rossby waves in zonal shear flows.
Problem identical to E x B transport by drift waves in zonal flows *

y Experiment
{y 165+0.15
/

Model
ly=157

Vortices induce

Super-diffusive
particle trapping

scaling

3¢)-r

Zonal flows induce
particle “flights”

Solomon et al, Phys. Rev. Lett. 71, 3975 (1993) D. del-Castillo-Negrete, Phys. Fluids 10, 576 (1998)

Signatures of anomalous transport: anomalous scaling of moments,
(6r?) ~ t7, v # 1, and non-Gaussian (heavy tails) PDFs.

DCN: Chaotic transport in zonal flows in analogous fluid and plasma
systems. Phys. of Plasmas, 7, (5), 1702-1711, (2000).



UNDERLYING MECHANISM OF NONDIFFUSIVE TRANSPORT

Levy flights induce by zonal flows and and long waiting times
induced by trapping by Rossby (Drift) waves.

- trapping

eddies induce
event

particle trapping

Zonal flows induce
particle “flights™ t

PDF of light events
107" N
. X 107
3 The algebraic decay

®

B \ of the trapping and flight
*© pdf’s gives rise to 107
& \\ self-similar, Algebraic
Algebraic scale-free transport || deeay
10} decay 10 prot
Pt-t - n=1.89

©=60

10
D. del-Castillo-Negrete, Phys. Fluids 10, 576 (1998)

Levy flights: P(6x) ~ ox~ (1) (§x?) — oo for a < 2.



STATISTICAL (RANDOM WALK) FOUNDATION OF
TRANSPORT MODELING

T, = waiting ti T ting ti df
Continons fime mandom walk ; ?val ing time 4 (T) = waiting time p
= jump
£ ~§n ) i (C) jump size pdf
T, s)=sy/(1-
PR s T

, |
X 1 LXK
Montroll-Weiss master equation \_/

4,P= fdt' p(t—1) jdx' [A(x = x)P(x',1) = A(x = x") P(x,1)]
0 " L -

memory gain loss

If there are well-defined spatio-temporal scales, the master equation leads to the
diffusion equation in the asymptotic, long-wavelength limit

9, P=-0.q q=VP-Di P

i x




STATISTICAL (RANDOM WALK) FOUNDATION OF
NONLOCAL TRANSPORT MODELS

*However, when | Trapping pdf 0<pf<l Jumps pdf l<a<2
—(l+a)

W(t) ~ P Ax) ~ ]

there is scale-free transport,<x2> — ®© <t > —>x
and the flux must include non-locality in space and time

*In the absence of memory, the non-local flux is

P(y,t) l<a<?2

P(y.0) dy

x b
q,(x,t)==-x J, lfidy+rf

(x _ y)a—l ) (y _ x)a—l

*In Fourier space: Gu=-X [l(—ik)a_l - r(ik)a_l]ﬁ(k)

a-1

*The scaling g, ~ (ik)*" motivates the term fractional diffusion

3,P=-0,q g=-DF'P




APPLICATION 1:
NONLOCAL MODEL OF CHAOTIC TRANSPORT IN
QUASIGEOSTROPHIC FLOWS

Comparison with asymmetric neutral

fractional diffusion equation

936)

P(bz,t

-800 -600 _4006 -200 0 200
T

D. dCN, Phys. Fluids 10, 576 (1998).
K. Gustafson, D. dCN, W. Dorland Phys. Of Plasmas 15, 102309 (2008).

Nonlocal model (in space and time) reproduces quantitatively the
PDF and scaling of moments in the strongly asymmetric regime



APPICATION 2:
NONLOCAL MODEL OF CHAOTIC TRANSPORT IN PLASMA

DRIFT WAVES
E x B chaotic transport in plasma drift waves with finite Larmor
radius
Test particle model a=£=08 oa=F=085
[, +(2xV4)-V](V2p— 9 Br) =0 =079 =084
' x=0.15 x=0.12
Guiding center case Gyro-averaged case

ﬁ_7 ﬂ @=<37¢> 107
dt \dy . dro\ax/,

1] P
il -

i

Effective fractional transport model
a. ;

—936)

P(oy,t

¢ Fractional
model A\
8}

i Fractional
model

600 600 400 200 0 200 -800 -600 400 -200 0 200
v v

oDf P=y(1,D¢+r DF)P
Non-Gaussian PDFs of particle displacements

K. Gustafson, D. del-Castillo-Negrete, and W. Dorland, Phys. Plasmas, 15,102309 (2008).



APPICATION 3:
NONLOCAL CHAOTIC TRANSPORT MODELING
IN LAPD EXPERIMENT

Schematic of temperature filament = Temperature evolution in chaotic

experiment advection model

Filament is 3 mm in radius and 8 meters long
20m

; /

Probe  Temperature filament Anode

Background plasma

+Electron beam slows down along B-field within a 1m-long region

*Region acts as heat source that generates a temperature filament by

axial and radial conduction

J. E. Maggs, G. J. Morales, and D. del-Castillo Negrete, “Study of
wave-driven chaotic advection in a temperature filament.” Submitted to
Phys. of Plasmas (2011).



NONLOCAL CHAOTIC TRANSPORT MODELING
IN LAPD EXPERIMENT

Chaotic transport of tracers

Non-Gaussian (Levy) PDF
Circle: initial conditions.

of path lengths
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APPICATION 4:
NONLOCAL MODEL OF TURBULENT TRANSPORT IN
MAGNETIZED PLASMAS

Test particle transport in electrostatic plasma turbulence

ExB flow velocity eddies “Avalanche like” phenomena induce flights that lead to
induce particle trapping spatial non-locality

I ;’;_::\\\\
/(,.p V.}-;m’ - -
\‘\\g“i,f

-

Non-Gaussian (Levy) distribution

Tracer orbits . ‘ W0
L vy Particle trapping and o] Ti=os
ﬂiglfﬁ'- 1 flights leads to super- 1977 I {Zoks 3
Trgpped | diffusive scaling 104 : L
orpit v 2
P P '&lz‘
] 10° 3
/ <6rn>~t2n/3 'Q,‘y‘ N
1 104, 8 3
T 10”2 : T T

-02 -0.1 0 0.1 02

v
D. del-Castillo-Negrete, B. Carreras and V. Lynch, Phys. Plasmas 11, 3854 (2004); Phys. R\é/v{ Lett. 94,
065003 (2005)



NONLOCAL MODEL MODEL OF TURBULENT TRANSPORT
IN MAGNETIZED PLASMAS

Test particle transport in the electrostatic plasma turbulence

Fr=—na] [e=par ] @ ()i
B=1/2

Levy distribution at fixed time Pdf at fixed point in space

10°
o

10°

|
101 Turbulence Fractional _

simulation ¢ ¢ =
P model £

10° e
10"

2 10
%2 KX 0 [X 02 107 10° t10" 10°

X

D. del-Castillo-Negrete, B. Carreras and V. Lynch, Phys. Plasmas 11, 3854 (2004); Phys. Rev. Lett. 94,
065003 (2005)

Fractional model reproduces quantitatively the PDF and scaling of
moments



NONLOCAL MODELS AS EFFECTIVE TRANSPORT MODELS

Individual tracers move following
the turbulent velocity field

The distribution of tracers P evolves
according the passive scalar equation

The proposed model encapsulates the
Spatio-temporal complexity of the
turbulence using fractional operators
in space and time

dr

Fractional derivative .
operators are useful tools

[9,+7V-V] @[ODf —X(an+XD,‘f)]

to construct effective
trunspprt operators when ( g +V-V
Gaussian closures do not

work

) = (0,-x7)

Fractional
approach

Gaussian
approach



APPICATION 5:
NONDIFFUSIVE TRANSPORT OF IMPURITIES IN PLASMA
TURBULENCE

10 — i
|
{ |
O e
. N
107 1 s
‘OjS o s 10 15
ExB radial velocity X107
(a)
107
5|
) 0
107 e
] < e
g > hEN
107 2 $
i ! ..- )' °
1025 N ER—— 5 5 ERER
(b)
Impurity driven ExB fluctuations Transition form diffusive (left column) to
intermittency and non-diffusive (right column) impurity
non-Gaussian statistics density transport

Futatani, del-Castillo-Negrete, Garbet, Benkadda, and Dubuit, “Self-consistent dynamics of impurities in
magnetically confined plasmas: turbulence intermittency and non-diffusive transport”. Submitted to Phys. Rev.

Letters (2012).



APPICATION 6:
NONLOCAL TRANSPORT MODEL OF PERTURBATIVE
EXPERIMENTS (JET)

Perturbative experiments at the Join European Torus (JET)
experiment.

“Heat wave”

Equilibrium
T Pulse
0
o2 Modulated
source
o
ooz o5 o8 1
P
EXPERIMENT
2 delay from edge to centre < 4 ms
s Cold pul
55809
R L o
2 .. propagate:
" .11 very fast
43 on
s 2.0 VLA
= e
o However, hea
27 £=0.. d 0
S e WA waves damp
20 V\"M and slow down ——
-
s e g
2w
s o6 & w0
£ A
o L+ 05 *
° 50.1 5042 50.14 50.16 50.18

tis] My
Cold pulse Mantica et al, 19th IAEA Conference EX/P1-04 (2002)



NONLOCAL HEAT TRANSPORT MODEL IN
FINITE SIZE DOMAINS

Finite size 19,[3/2'%7;] =-0, [ q,+ q,+ q[,] +S(x,1)

model

Local flux ¢, =—Nn,X,; 19,( T

q,=—In, 2, DI T

a~x

Non-local
fluxes _ R
q,=rmx, Dy T

Xa XarXu Regularized fractional derivatives
Diffusive Non-diffusive o : o)1
transport transport DT = {

F2-a);, (x-y)

~

t
0« R ! R -1 jT‘@)—T'(b)
Boundary condit Dy T= el
oundary conditions F(Z—a) g (y_x)

la,+49,+4:]0)=0 T®)=0
dCN Phys. Plasmas 13, 082308 (2006)




NONLOCAL TRANSPORT MODEL OF PERTURBATIVE
EXPERIMENTS (JET)

Perturbative power modulation experiments

T.(p.0)= D A, (p)exp [ig,(p)+iw,1]

Experiment

" Mode amplitude Mode phase
0%
= 60
1
.
Model ar fo o
- _ A -
— B.s0l/ 2 £
° 7% < re o &
B2 .
o 20 .
.
205 BT a2z 2m  sa % = 26 s o e
time [s] 10 - 0.5
a=125 OM o
Xu=2m"/sec x>0.1 0 0",5 1 0 0")5 1
dots: experiment black: 1st harmonic

X0 =(0.75+6x)m* /sec
solid line: fractional model red: 3rd harmonic

dCN et al. Nucl. Fusion 48 05009 (2008)



LOCAL VS NONLOCAL HEAT WAVE PROPAGATION

As the modulation frequency decreases, the difference between
local and nonlocal increases

Diffusive transport

Equilibrium

‘Heat wave”

___ Modulated
source




NONLOCAL TRANSPORT MODEL OF PERTURBATIVE
EXPERIMENTS (JET)

Cold pulse perturbative experiments

*Consistent with the experiment, the fractional model gives a delay of the order of

4ms for cold pulses Model

Experiment 8T, =0.03keV
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dCN et al. Nucl. Fusion 48 05009 (2008)



FAST PULSE PROPAGATION AND LONG RANGE FLUXES IN
THE NONLOCAL HEAT TRANSPORT MODEL

§T a=2 8T a=175 8T a=125
Temperature
! perturbation
X X
8§q a=2 §q a=175 8§q a=125
0.06 0.06 0.06 Flux
0.05 0.05 0.05 perturbation
0.04 0.04 0.04
0 © ©
£ 003 £ 003 £ 003
0.02 0.02 0.02
0.01 0.01 0.01
0 05 1 0 05 0.5

D. del-Castillo-Negrete, P. Mantica, V. Naulin. Nucl. Fusion 48 05009 (2008).



APPICATION 7:
NONLOCAL TRANSPORT MODEL OF PERTURBATIVE
EXPERIMENTS (LHD)

*Recent experiments in the Large Helical Device (LHD) have observed non-monotonic
fast cold pulse propagation

*The non-local model exhibits similar phenomenology

Experiment Model

g / o
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Time traces of temperature

- Spatio-temporal evolution of
perturbations

temperature and flux perturbations

D. del-Castillo-Negrete, N. Tamura and S. Inagaki and the LHD team, IAEA 2010



NONLOCAL TRANSPORT MODEL OF PERTURBATIVE
EXPERIMENTS (LHD)

*In the experiment and in the non-local model, the non-monotonic fast cooling
is accompanied by non-Fickian loops in the flux-gradient plane

Experiment Model
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D. del-Castillo-Negrete, N. Tamura and S. Inagaki and the LHD team, IAEA 2010



ANISOTROPIC TRANSPORT IN
3-D MAGNETIC FIELDS

» D. del-Castillo-Negrete, and L. Chacén, “Local and nonlocal parallel
transport in general magnetic fields.” Phys. Rev. Letters 106, 19,
195004 (2011)

» D. del-Castillo-Negrete, and L. Chacén, “Parallel heat transport in

integrable and chaotic magnetic fields” APS Invited paper.
Submitted to Phys. of Plasmas, Dec. 2011.



ANISOTROPIC HEAT TRANSPORT IN
MAGNETIZED PLASMAS

*Transport in magnetized plasmas is a problem of
fundamental interest to control fusion and astrophysics

[ 3,T =V-[,bb VT + % (I-bb) - VT] =S]

*This is a very challenging problem because:

« Extreme anisotropy

*Magnetic field line chaos

T(s+z) —T(s—Z)
*Nonlocal (free streaming) transport [ a=xJ - dz

P
*We propose, implement, and test a novel method to solve this problem in the
case x, =0 applicable to local and non-local transport in general magnetic fields,

*By construction the method preserves transport barriers, is positive definite,
and algorithmically scalable and parallel.



LAGRANGIAN GREEN's FUNCTION (LG) METHOD Y, = 0

- B
Initial b=— Unit magnetic field
condition ‘B‘ vector
) dr ~r. Magnetic field line
Magnetic f=b[r(s)] parametrized by
Field line S

arc length

T(?p,t) _ fYB[F(S)] G(s,t) ds | Exact solution at

point 7p attimet

Green’s function

Mapping into 1-d G(s,t) of 1-D problem

transport problem

ﬂ G+ S 1-Dtransport
! problem

en

Source

o




DIFFUSIVE PARALLEL TRANSPORT

Assuming a constant, uniform density 0; T = -V - q

A~

For parallel diffusive transport, q = —x [6 . VT} b

Introducing the derivative along the field line path, 05 = b-V,
0T+ VOsT=x T,  V=yx0sIn|B|

» Approximating V ~ 0 (tokamak ordering) 0;: T = X||3§T

» Solution

T(rp, t) = / To [r(s')] Ga(s', t)ds’, % = b(s)
with r(0) = r, and G,, the Green's function, which in the
diffusive case (in an unbounded domain with no source)

2
-1/2 exp [_ S }

G2(5, t) = ﬁ

2\1/% (xt)



NON-LOCAL PARALLEL TRANSPORT

For nonlocal parallel transport q = qatA) is an integral operator
For a general underlying non-Gaussian (Levy a-stable)
stochastic process [del-Castillo-Negrete,2006]

)\X/ T(s+z)—T(s—z)dZ’ l<a<?
™ Jo z%

a =

In the a = 1 limit, g; reduces to the free-streaming case
[Hammett-Perkins 1990; Held-Hegna-Callen-Sovinec 2000].
The heat transport equation becomes a fractional diffusion
equation along the field lines

OT = x0T, FlogT| =kt

Is

For the free-streaming case @ = 1 (in an unbounded domain
with no sources)

xt) ' 1

Gl D) = e e




TEMPERATURE MIXING IN MAGNETIC ISLAND

» Periodic, straight cylinder B = Bo(r) + B1(r, 0, z)
» Helical equilibrium: Bg = f(r) &y + bg €,
» Single mode, integrable perturbation:

_18Azé 8Azé
T r a0 " or ¢

A; = A(r)cos(mf — nz/R) .

B

Poincare Plot 2D Temperature Temperature profile




WEAKLY CHAOTIC FIELD

» Perturbation with only two, weakly overlaping modes
» Fractal mixture of chaos, islands and KAM curves
» Initial condition Tp = 1 — 2R?y, with ¢ = r?/(2R?)

1
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0.348
36
0.346
0.35
~ 0.344 - 034
0.342 o
0.34 0.32
0352 0.353 0.354 0355 0.356 035 0355 036 0.365
Ry Ry

LG method able to fully resolve fractal Devil’s staircase
temperature profile in the x/x1 — oo limit



FULLY CHAOTIC FIELD

Twenty one, strongly overlaping modes

)

ROTATIONAL TRANSFORM CHIRIKOV OVERLAP PARAMETER

Poincare plot shows fully stochastic phase space

] 0 0 0 0 03
R*y

Magnetic field exhibits the expected quasilinear diffusion in (2, 6).



RADIAL TRANSPORT OF HEAT PULSE
IN FULLY CHAOTIC FIELD

» Local (diffusive) parallel transport q = —x [IA) . VT} b
» Cylindrical shell i.c. To = exp [—R2 (¥ — o)? /08}

» Second moment 02 = [ (¢ — 1) (T)g.,d4) exhibits the
expected sub-diffusive scaling

o2 ~ 7, yr1/2

Time=0.01, 0.1, 1, 10, 102, 10°, 10, 10°, 10°, ,
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10°
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3
=40 10
10 10 5 B N 5
0 01 02 03 04 0F 10 10 10 10
R2y time
Time evolution of radial temperature Red: subdiffusive scaling o~ \/?

rofiles averaged in 0 and z.
P € Green: diffusive scaling o ~t



NON-GAUSSIAN SELF-SIMILAR TEMPERATURE EVOLUTION
LOCAL PARALLEL TRANSPORT CASE

Radial temperature profile exhibits self-similar evolution

(Thoz (. t) = () 2 Lm) = — (@) /(xt)?
with subdiffusive scaling exponent, v & 1/2 , and non-Gaussian
stretched exponential scaling function ,

L=exp[-(Inl/w)], v=~16
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RADIAL TRANSPORT OF HEAT PULSE
IN FULLY CHAOTIC FIELD

» Non-local (“free-streaming”) parallel transport

CI(SJ):)\X/OOO T(s+z;t)—T(s—zt)

dz

s z

» Second moment exhibits the expected diffusive scaling
2
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R2y
Time evolution of radial temperature Red: subdiffusive scaling o ~ ,\/;
profiles averaged in 6 and z.

Green: diffusive scaling o ~t



NON-GAUSSIAN SELF-SIMILAR TEMPERATURE EVOLUTION
NONLOCAL PARALLEL TRANSPORT CASE

Radial temperature profile exhibits self-similar evolution

(To,z (¥, 1) = (xt) "> L(n)

n= (- (@) /(xt)/?

with scaling exponent, v &~ 1 , and non-Gaussian scaling function,

| 4 emfo?
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EVIDENCE OF NON-DIFFUSIVE RADIAL TRANSPORT

» In the standard diffusion paradigm the study of radial
transport is based on the Fourier-Fick's prescription

(@-8p) = —Xer (VT - &)
» Parametric curves tracing the value of the flux (q - &,) and

the gradient (VT - &;) as function of ¢ at two different times
Diffusive parallel transport ~ Free streaming parallel transport
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Multivalued, time dependent parametric curves inconsistent with

quasilinear diffusion models (e.g., xrr = Vv||Dm)-



CONCLUSIONS

Although the standard diffusion paradigm has been
successfully applied to describe transport, there are important
cases in which it fails to apply.

Signatures of non-diffusive processes include: non-Gaussian
and non-Markovian statistics (due to long range correlations,
trapping effects and long flights); fast propagation
phenomena; multivalued flux-gradient relations; up-hill
transport.

We have proposed a class of non-local models for non-diffusive
transport, in which the flux depends on the whole spatial
dependence and/or the time history of the gradients.

We applied the non-local model to large variety of systems
including: chaotic and turbulent transport, and perturbative
transport experiments.



CONCLUSIONS

Proposed a Lagrangian Green's function method for accurate
and efficient computation of parallel (x = 0) transport.

The method applies to local and nonlocal closures, integrable,
weakly chaotic and fully chaotic 3-D magnetic fields, with
sources, and general boundary conditions.

Studied temperature mixing in single-mode magnetic islands
and fully resolved the fractal structure of the temperature
devil-staircase profile in weakly chaotic fields.

Showed that effective radial transport is not diffusive in fully
chaotic fields. Use of quasilinear diffusion for radial
temperature transport (e.g. xrr = v||Dp) doubtful!



