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THE “BIG PICTURE”

I Our main goal is to study the basic physics mechanisms that
control turbulence and transport in fusion plasmas

I We are particularly interested in the study of the potential
limitations of current turbulent transport models

I Our methodology rests on synergetic work involving
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• The goal of the Transport and Turbulence effort is to study the basic physics  
mechanisms that control turbulence and transport in fusion plasmas 

• We do this in order to understand the potential limitations of present models, 
 and to develop improved simulations and models that can be compared with  
experiments 
• Our methodology rests on synergetic work involving 

• A signature of our approach is the incorporation of novel ideas and  
methods  from other areas 

Transport 
Theory 

Numerical 
Simulations 

Comparison with 
Experiments 

Goals and methodology 

I A signature of our approach is the incorporation of novel ideas
and methods from other areas



NON-DIFFUSIVE TRANSPORT THEORY

I The work on non-diffusive transport theory is based on ideas
and tools from different areas including:

I non-equilibrium statistical mechanics, stochastic processes,
I non-linear dynamics, complexity theory, data analysis,

fractional calculus, . . .

I Over the last years we have developed a unifying framework to
study turbulent transport in general, and non-diffusive,
non-local transport in particular.

I The key feature is the relaxation of the restrictive assumptions
upon which the standard diffusion formulation is based.

I Our methodology is to develop a hierarchy of reduced,
effective models of various levels of complexity that can be
applied to experiments and eventually improve the predictive
capability of existing transport codes.



NUMERICAL METHODS

I There is a tendency in the fusion community to identify
computational physics with “big codes” and software
development.

I A good amount of work is focused on the linear growth of
codes (i.e. add “more physics”) followed by integration (i.e.,
frameworks)

I The ultimate value of big codes rest on predictability. But it
is not clear how to get there (very tough multiscale problem!)

I This is an important effort, but is not the whole story.
I Adding more and more physics quite often obscures the

physics and compromises discovering and understanding.
Sooner or later this hampers predictability.

I The race for bigger codes could also compromise the
development of better, more efficient innovative algorithms
that required small scale proof-of-principle studies.

I Bigger codes deliver massive amounts of data which ends up
being underutilized.



I How could theory and numerical method complement the
best?

I Data analysis
I “Small” codes targeting specific physics: problem driven

computational physics
I Innovative algorithms

DATA ANALYSIS

I Focus more on how to analyze the huge data sets produced by
existing codes, than in the development of bigger codes for
faster machines. Some examples include:

I Use of tensor product decomposition methods to compress and
analyze 6-D gyrokinetic data sets. Hatch, del-Castillo-Negrete, and Terry.

“Analysis and compression of six-dimensional gyrokinetic datasets using higher order singular value

decomposition.” Submitted to Journal of Computational Physics (2011).

I Use of SVD-type methods for the efficient representation and
compression of 3-D MHD dat sets. del-Castillo-Negrete, Hirshman, Spong,

and D’Azevedo: “Compression of magnetohydrodynamic simulation data using singular value

decomposition. J. Comp. Phys., 222, 265 (2007).



I More examples on data analysis methods
I Use of POD methods for multiscale analysis of plasma

turbulence. Futatani, Benkadda, and del-Castillo-Negrete: “Spatio-temporal multiscaling

analysis of impurity transport in plasma turbulence using proper orthogonal decomposition. Phys.

of Plasmas, 16, pp. 042506-042506-12 (2009).

I Use of POD and wavelet methods to characterize and extract
coherent structures from turbulence simulations. Futatani, Bos,

del-Castillo-Negrete, Schneider, Benkadda, Farge: “Coherent Vorticity Extraction in Resistive

Drift-wave Turbulence: Comparison of Orthogonal Wavelets versus Proper Orthogonal

Decomposition.” Comptes Rendus Physique, 12, 2, 123-131 (2011).



PHYSICS DRIVEN NUMERICAL METHODS

I Lagrangian-Green’s function methods to study highly
anisotropic transport in 3-D chaotic field
del-Castillo-Negrete and Chacon, “Local and nonlocal parallel transport in general magnetic fields.” Phys.

Rev. Letters 106, 19, 195004 (2011).

I Finite-different method to solve integro-differential non-local
transport equations
Lynch, Carreras, del-Castillo-Negrete, Ferreira-Mejias, and Hicks: “Numerical methods for the solution of

partial differential equations of fractional order.” J. Comp. Phys., 192, 2, 406-421 (2003).

del-Castillo-Negrete: “Fractional diffusion models of nonlocal transport.” Phys. of Plasmas 13, 082308

(2006).



INNOVATIVE ALGORITHMS

I Use of POD and wavelet methods to denoise particle-based
codes.
Nguyen, del-Castillo-Negrete, Schneider, Farge, and Chen: “Wavelet-based density estimation for noise

reduction in plasma simulations using particles.” Journal of Comp. Physics 229, 28212839 (2010).

del-Castillo-Negrete, Spong, and Hirshman: “Proper orthogonal decomposition methods for noise reduction

in particle-based transport calculations. Phys. of Plasmas 15, 092308 (2008).

I Lagrangian-Green’s function methods and Asymptotic
preserving methods for anisotropic transport.
del-Castillo-Negrete and Chacon, “Parallel heat transport in integrable and chaotic magnetic fields”

APS-DPP Invited paper, submitted to Phys. of Plasmas (2012).

L. Chacon and D. del-Castillo-Negrete, Bulletin of American Physical Society, Abstract ID:

BAPS.2011.DPP.GP9.2. DPP 54th Annual Meeting, GP9 00002, Nov. 2011.

I POD-based projective integration methods for collisional
transport particle codes.



INTERACTION WITH EXPERIMENTS

I Main focus on modeling perturbative transport experiments.
I JET collaboration.

Naulin, Rasmussen, Mantica, del-Castillo-Negrete: “Fast Heat Pulse Propagation by Turbulence

Spreading. J. Plasma Fusion Res. SERIES, Vol. 8, 55 (2009).

del-Castillo-Negrete, Mantica, V. Naulin, Rasmussen: “Fractional diffusion models of non-local

perturbative transport: numerical results and applications to JET experiments.” Nuclear Fusion

48, 75009 (2008).

I LHD collaboration
del-Castillo-Negrete, Tamura, and Inagaki, “Non-local transport modeling of heat transport in the

LHD.” IAEA. Proc. 23nd Int. Conference. Daejon, Rep. f Korea (2010).

I Mid-size experiments like UCLA-LAPD provide a unique
setting to explore basic plasma physics issues.
Maggs, Morales, and del-Castillo Negrete, “Study of wave-driven chaotic advection in a temperature

filament. Submitted to Phys. of Plasmas (2011).

I Application of reduced models of LH transition to Alcator
C-mod
Hubbard, B.A. Carreras, N.P. Basse, D. del-Castillo-Negrete, J.W. Hughes, A. Lynn, E.S. Marmar, D.

Mossessian, P. Phillips, S. Wukitch: Plasma Physics and Controlled Fusion 46, A95 (2004).



NON-DIFFUSIVE TRANSPORT



LOCAL MODELS OF DIFFUSIVE TRANSPORT

•Within this framework, the goal of transport modeling is to find V and D based
on theory, numerics and experimental evidence.

•According to the standard diffusive paradigm

Diffusive transport
•Consider the transport of a single scalar field in  one dimension

 

!t T + !x V T[ ] = !x D!x T[ ] + S

Convective
transport

Diffusive
transport

 

!t T = "!x q + S

 

D = D x,t;T,!xT( )Diffusion coefficient

Velocity  pinch

 

V =V x,t( )

 

qd = !D "x T + V T

•This approach has been quite useful and valuable for the understanding 
of transport in fusion plasmas. 

However……



LIMITATIONS OF LOCAL MODELS OF
DIFFUSIVE TRANSPORT

•The “V-D” paradigm is a local description that assumes Markovian, Gaussian
statistics, well-defined spatio-temporal transport scales, and absence of long-range
correlations.

Non-diffusive transport

•There is experimental, numerical and theoretical evidence that indicates that
these assumptions might be too restrictive.

•Lagrangian statistics: 

!Super-(sub)-diffusive evolution of statistical moments
!Non-Gaussian (heavy tailed, Levy) propagators and PDFs
!Long range correlations 

•Fast propagation phenomena (e.g., cold pulses)

•Multi-valued, and up-hill flux-gradient relationships

•Non-Gaussian turbulent fluctuations

•Signatures of non-diffusive transport



NONLOCAL MODEL OF NONDIFFUSIVE TRANSPORT

•Over the last several years we have explored the use of alternative spatio-
temporal non-local transport models of the form

Non-diffusive transport

•In the models considered here, the selection of the functions  K(x-x’) and
W(t-t’) is based on the theory of non-Gaussian, non-Markovian stochastic
processes, and the analytical and numerical framework is based on fractional
calculus.

q(x,t) = !" #x dx ' K(x ! x ')$ dt 'W (t ! t ')$ T (x ',t ')

Spatial non-locality Temporal non-locality

•A point about the terminology: we do not deem as non-local or non-diffusive
models with:

• Off-diagonal terms, or with “anomalous”  terms in the flux gradient relations
•Non-linearly coupled (e.g. reaction-diffusion type) diffusion models

Although these models are interesting, conceptually they are variations of the Fourier-
Ficks’ local prescription



DIFFUSIVE TURBULENT TRANSPORT
DIFFUSIVE TRANSPORT:

AN EXAMPLE FROM FLUID MECHANICS

Transport of tracers in fully developed, isotropic, homogeneous
(“boring”) turbulence

Statistical Lagrangian signatures of

diffusive transport
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NONDIFFUSIVE TRANSPORT AND COHERENT STRUCTURES

Chaotic transport by Rossby waves in zonal shear flows.
Problem identical to E×B transport by drift waves in zonal flows 1

ANOMALOUS TRANSPORT:
AN EXAMPLE FROM FLUID MECHANICS

Super-diffusive transport in flows with coherent structuresExample 1: Texas rotating fluid experiments

! r2 ~ t "

Super-diffusive
scaling

Vortices induce 
particle trapping

Zonal flows induce
particle “flights”

Model

Experiment

D. del-Castillo-Negrete, Phys. Fluids 10, 576 (1998)Solomon et al, Phys. Rev. Lett.  71,  3975 (1993)

x

P

 

! =1.65±0.15

Experiment

Model

! = 1.57

Non-Gaussian PDF

Signatures of anomalous transport: anomalous scaling of moments,
�δr2� ∼ tγ , γ �= 1, and non-Gaussian (heavy tails) PDFs.

1DCN: Chaotic transport in zonal flows in analogous fluid and plasma
systems. Phys. of Plasmas, 7, (5), 1702-1711, (2000).



UNDERLYING MECHANISM OF NONDIFFUSIVE TRANSPORT

Levy flights induce by zonal flows and and long waiting times
induced by trapping by Rossby (Drift) waves.

t
flight
event

trapping
  event

x
eddies induce 
particle trapping

Zonal flows induce
particle “flights”

PDF of trapping events
PDF of light events

Coherent structures (e.g., zonal flows and eddies)
play a key role in non-diffusive transport

Algebraic 
decay

Algebraic 
decay

The algebraic decay 
of the trapping and flight
pdf’s gives rise to 
self-similar,
scale-free transport

D. del-Castillo-Negrete, Phys. Fluids 10, 576 (1998)

Levy flights: P(δx) ∼ δx−(1+α), 〈δx2〉 → ∞ for α < 2.



STATISTICAL (RANDOM WALK) FOUNDATION OF
TRANSPORT MODELINGStatistical foundations of transport modeling!

= jump!! n! n
!n

!n = waiting time! ! "( ) = waiting time pdf!

! "( ) = jump size pdf!

Montroll-Weiss master equation!
! 

˜ " (s) = s ˜ # /(1$ ˜ # )

! 

" #( ) = memory function!

If there are well-defined spatio-temporal scales, the master equation leads to the!
diffusion equation in the asymptotic, long-wavelength limit    !! 

"t P = dt ' #(t $ t') dx ' %(x $ x ')P(x',t) $ %(x $ x')P(x,t)[ ]
$&

&

'
0

t

'
gain! loss!memory!

x!x’!

! 

"t P = # "x q

Continuous time random walk!

! 

q =V P "D#x P



STATISTICAL (RANDOM WALK) FOUNDATION OF
NONLOCAL TRANSPORT MODELS

• In the absence of memory, the non-local flux is!

! 

ˆ q nl = "# l("ik)$"1 " r (ik)$"1[ ] ˆ P (k)• In Fourier space:!

• The scaling !             motivates the term fractional diffusion !

! 

ˆ q nl ~ (ik)"#1

! 

1<" < 2

! 

qnl (x, t) = "# $x l
P(y, t)
x " y( )%"1a

x

& dy + r
P(y, t)
y " x( )%"1x

b

& dy
' 
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) 
) 

* 

+ 
, 
, 

! 

"(t) ~ t# 1+$( )

Trapping pdf!

! 

0 < " <1

! 

"(x) ~ x #(1+$ )

Jumps pdf!

! 

1<" < 2• However, when!

there is scale-free transport, !
and the flux must include  non-locality in space and time!

! 

t "#

! 

x 2 "#

! 

"t P = # "x q

! 

q = "D#x
$"1P



APPLICATION 1:
NONLOCAL MODEL OF CHAOTIC TRANSPORT IN

QUASIGEOSTROPHIC FLOWS

Fractional diffusion model

Model
Comparison with asymmetric neutral

fractional diffusion equation

! 

" = #=0.9

! 

" =1

(strongly asymmetric regime)

D. dCN, Phys. Fluids 10, 576 (1998).

K. Gustafson, D. dCN, W. Dorland Phys. Of Plasmas 15, 102309 (2008).

Nonlocal model (in space and time) reproduces quantitatively the
PDF and scaling of moments in the strongly asymmetric regime



APPICATION 2:
NONLOCAL MODEL OF CHAOTIC TRANSPORT IN PLASMA

DRIFT WAVES

E× B chaotic transport in plasma drift waves with finite Larmor
radius

Application 1: Test particle transport in deterministic chaotic flows

!t + z " #$( ) %#&' () #2$ * $ * +x( ) = 0

dx
dt

= !
"#
"y $

dy
dt

=
!"
!x #

Guiding center case Gyro-averaged case

Fractional 
model

Fractional 
model

Non-Gaussian PDFs of particle displacements

Test particle model ! = " = 0.8
# = 0.79
$ = 0.15

! = " = 0.85
# = 0.84
$ = 0.12

K. Gustafson, D. del-Castillo-Negrete, and W. Dorland, Phys. Plasmas, 15,102309 (2008).

0Dt
! P = " l a Dx

# + r x Db
#( )P

Effective fractional transport model



APPICATION 3:
NONLOCAL CHAOTIC TRANSPORT MODELING

IN LAPD EXPERIMENT
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1m 

Temperature filament Probe 

B 

• Electron beam slows down along B-field within a 1m-long  region 

• Region acts as heat source that generates a temperature filament  by 

   axial and radial conduction            

Background plasma 

 Schematic of Temperature Filament Experiment 

Filament is 3 mm in radius and 8 meters long 
20 m 
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J. E. Maggs, G. J. Morales, and D. del-Castillo Negrete, “Study of

wave-driven chaotic advection in a temperature filament.” Submitted to

Phys. of Plasmas (2011).



NONLOCAL CHAOTIC TRANSPORT MODELING
IN LAPD EXPERIMENT
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APPICATION 4:
NONLOCAL MODEL OF TURBULENT TRANSPORT IN

MAGNETIZED PLASMAS

Test particle transport in electrostatic plasma turbulenceTest particle turbulent transport in plasmas!
ExB flow velocity eddies!
induce particle trapping!

Tracer orbits!

Trapped !
orbit!

“Levy”!
  flight!

“Avalanche like” phenomena induce flights that lead to !
spatial non-locality!

Particle trapping and !
flights leads to super-!
diffusive scaling!

! 

" rn ~ t 2n / 3

Non-Gaussian (Levy) distribution!

D. del-Castillo-Negrete, B. Carreras and V. Lynch, Phys. Plasmas 11, 3854 (2004); Phys. Rev. Lett. 94, 
065003 (2005) !



NONLOCAL MODEL MODEL OF TURBULENT TRANSPORT
IN MAGNETIZED PLASMAS

Test particle transport in the electrostatic plasma turbulenceApplication of non-local model to turbulent transport!

Turbulence!
simulation! Fractional 

model!

~ x! (1+" )

Levy distribution at fixed time!

Turbulence !

~ t!

model!

Pdf at fixed point in space!

~ t !"

x2 ~ t 2! /" ~ t4 / 3

D. del-Castillo-Negrete, B. Carreras and V. Lynch, Phys. Plasmas 11, 3854 (2004); Phys. Rev. Lett. 94, 
065003 (2005) !

! 

"t
#P = $ "x q

! 

q = "D#x
$"1P ! = 3/ 4

! =1/ 2

Fractional model reproduces quantitatively the PDF and scaling of
moments



NONLOCAL MODELS AS EFFECTIVE TRANSPORT MODELS
Effective transport operators for turbulent transport
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APPICATION 5:
NONDIFFUSIVE TRANSPORT OF IMPURITIES IN PLASMA

TURBULENCE
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FIG. 1: Impurity-driven intermittency in E×B velocity fluc-
tuations. Top (bottom) figure corresponds to low (high) nickel
impurity concentration. Main panels show the probability
density function (PDF) of fluctuations in blue with a Gaus-
sian fit in red. Inserts show time series at r/a = 0.5.

concentration case. The initial transient phase of impu-
rity injection (3.20 × 104 < cst/a < 3.24 × 104) is not
shown for clarity. Impurity injection of its low concen-
tration is shown in Fig. 2(a), which corresponds to their
use as particle tracers for probing turbulent transport.
Large bursts of impurity transport are observed alternat-
ing with quiescent period with “upward” moving events
usually less frequent than downward moving fronts.

Figure 3 shows inward front propagation of ion temper-
ature perturbations due to self-consistent impurity driven
turbulence. The propagation speed of a front is typically
of the order of Vp ∼ 3.3× 10−3cs, where cs = (T0/mi)1/2

is the acoustic speed and T0 is a reference temperature.
Theoretically, the propagation speed of the front is the
order of Vp ∼ ρ∗cs and ρ∗ = 6× 10−3 in this work. The
propagation speed which is observed in the simulation is
proper value. For realistic plasma parameters, this time
scale is much smaller than a confinement time. [NOTE:
please check the accuracy of this statements and
add references that support these estimates].

An analysis of the flux-gradient relation is shown in
Fig. 2 to determine whether transport is non-local. In
particular, the bottom panels show a scatter plot of
Γz/nz against −∇nz/nz as a function of time at fixed ra-
dial point. A linear fit indicates that a simple diffusion-
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FIG. 2: Non-diffusive turbulent transport of impurity density.
The top panels show the space-time evolution of the impurity
pulse, and the bottom panels the corresponding flux-gradient
relation. The left (right) column corresponds to the low (high)
impurity concentration case.
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convection velocity model is applicable in Fig. 4(a) in
which impurities are injected with its low concentration.
On the other hand, there is no defined slope of the trajec-
tories in Fig. 4(b) in which impurities are injected with
its high concentration. This indicates that a diffusion-
convection relation is no longer applicable. The red cir-
cles indicate the analysis for a single avalanche event.
The relation between Γz/nz and −∇nz/nz shows a hys-
teresis loop where the trajectory evolves in the coun-
terclockwise direction. The impurity density gradient
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FIG. 1: Impurity-driven intermittency in E×B velocity fluc-
tuations. Top (bottom) figure corresponds to low (high) nickel
impurity concentration. Main panels show the probability
density function (PDF) of fluctuations in blue with a Gaus-
sian fit in red. Inserts show time series at r/a = 0.5.

concentration case. The initial transient phase of impu-
rity injection (3.20 × 104 < cst/a < 3.24 × 104) is not
shown for clarity. Impurity injection of its low concen-
tration is shown in Fig. 2(a), which corresponds to their
use as particle tracers for probing turbulent transport.
Large bursts of impurity transport are observed alternat-
ing with quiescent period with “upward” moving events
usually less frequent than downward moving fronts.

Figure 3 shows inward front propagation of ion temper-
ature perturbations due to self-consistent impurity driven
turbulence. The propagation speed of a front is typically
of the order of Vp ∼ 3.3× 10−3cs, where cs = (T0/mi)1/2

is the acoustic speed and T0 is a reference temperature.
Theoretically, the propagation speed of the front is the
order of Vp ∼ ρ∗cs and ρ∗ = 6× 10−3 in this work. The
propagation speed which is observed in the simulation is
proper value. For realistic plasma parameters, this time
scale is much smaller than a confinement time. [NOTE:
please check the accuracy of this statements and
add references that support these estimates].

An analysis of the flux-gradient relation is shown in
Fig. 2 to determine whether transport is non-local. In
particular, the bottom panels show a scatter plot of
Γz/nz against −∇nz/nz as a function of time at fixed ra-
dial point. A linear fit indicates that a simple diffusion-
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FIG. 2: Non-diffusive turbulent transport of impurity density.
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impurity concentration case.
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convection velocity model is applicable in Fig. 4(a) in
which impurities are injected with its low concentration.
On the other hand, there is no defined slope of the trajec-
tories in Fig. 4(b) in which impurities are injected with
its high concentration. This indicates that a diffusion-
convection relation is no longer applicable. The red cir-
cles indicate the analysis for a single avalanche event.
The relation between Γz/nz and −∇nz/nz shows a hys-
teresis loop where the trajectory evolves in the coun-
terclockwise direction. The impurity density gradient

Futatani, del-Castillo-Negrete, Garbet, Benkadda, and Dubuit, “Self-consistent dynamics of impurities in

magnetically confined plasmas: turbulence intermittency and non-diffusive transport”. Submitted to Phys. Rev.

Letters (2012).



APPICATION 6:
NONLOCAL TRANSPORT MODEL OF PERTURBATIVE

EXPERIMENTS (JET)

Perturbative experiments at the Join European Torus (JET)
experiment. Application 3: Modeling  JET experiments

Cold pulse
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source

Cold pulse
propagates
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However, heat
waves damp
and slow down

Mantica et al, 19th IAEA Conference EX/P1-04 (2002)
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NONLOCAL HEAT TRANSPORT MODEL IN
FINITE SIZE DOMAINS

Fractional diffusion model of heat transport
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NONLOCAL TRANSPORT MODEL OF PERTURBATIVE
EXPERIMENTS (JET)

Perturbative power modulation experiments

black:1st harmonic
red: 3rd harmonic

dots: experiment
solid line: fractional model

Mode amplitude Mode phase
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Power Modulation
comparison model with experiment

dCN et al. Nucl. Fusion 48 05009 (2008)
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LOCAL VS NONLOCAL HEAT WAVE PROPAGATION

As the modulation frequency decreases, the difference between
local and nonlocal increases

Non-local heat wave propagation due to power 
modulation!

!

" #

“Heat wave”!

Modulated!
source!

Equilibrium!

! 

Te

Non-local transport!

Diffusive transport!

D. del-Castillo-Negrete, Submitted to Plasma Phys. Controlled Fusion (2010).!



NONLOCAL TRANSPORT MODEL OF PERTURBATIVE
EXPERIMENTS (JET)

Cold pulse perturbative experimentsCold Pulse: comparison model with experiment
•Consistent with the experiment, the fractional model gives a delay of the order of
4ms for cold pulses ModelExperiment

 

!Te = 0.03keV

dCN et al. Nucl. Fusion 48 05009 (2008)



FAST PULSE PROPAGATION AND LONG RANGE FLUXES IN
THE NONLOCAL HEAT TRANSPORT MODEL

Cold !
Pulse!

Temperature!
perturbation!

Flux!
perturbation!

Fast pulse propagation in the non-local transport model!

D. del-Castillo-Negrete, P. Mantica, V. Naulin. Nucl. Fusion 48 05009 (2008).!



APPICATION 7:
NONLOCAL TRANSPORT MODEL OF PERTURBATIVE

EXPERIMENTS (LHD)Cold Pulse: application of model to LHD experiments!
• Recent experiments in the Large Helical Device (LHD) have observed non-monotonic!
fast cold pulse propagation!

• The non-local model exhibits similar phenomenology!

D. del-Castillo-Negrete, N. Tamura and S. Inagaki and the LHD team, IAEA 2010!



NONLOCAL TRANSPORT MODEL OF PERTURBATIVE
EXPERIMENTS (LHD)Cold Pulse: application of model to LHD experiments!

• In the experiment and in the non-local model, the non-monotonic fast cooling!
is accompanied by non-Fickian loops in the flux-gradient plane!

D. del-Castillo-Negrete, N. Tamura and S. Inagaki and the LHD team, IAEA 2010!



ANISOTROPIC TRANSPORT IN
3-D MAGNETIC FIELDS

I D. del-Castillo-Negrete, and L. Chacón, “Local and nonlocal parallel

transport in general magnetic fields.” Phys. Rev. Letters 106, 19,

195004 (2011)

I D. del-Castillo-Negrete, and L. Chacón, “Parallel heat transport in

integrable and chaotic magnetic fields” APS Invited paper.

Submitted to Phys. of Plasmas, Dec. 2011.



ANISOTROPIC HEAT TRANSPORT IN
MAGNETIZED PLASMAS
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LAGRANGIAN GREEN’s FUNCTION (LG) METHOD χ⊥ = 0
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DIFFUSIVE PARALLEL TRANSPORT

I Assuming a constant, uniform density ∂tT = −∇ · q
I For parallel diffusive transport, q = −χ‖

[
b̂ · ∇T

]
b̂

I Introducing the derivative along the field line path, ∂s = b̂ · ∇,

∂tT + V ∂sT = χ‖∂
2
s T , V = χ‖∂s ln |B|

I Approximating V ∼ 0 (tokamak ordering) ∂tT = χ‖∂
2
s T

I Solution

T (rp, t) =

∫ ∞
−∞

T0

[
r(s ′)

]
Gα(s ′, t)ds ′ ,

dr

ds
= b̂(s)

with r(0) = rp and Gα, the Green’s function, which in the
diffusive case (in an unbounded domain with no source)

G2(s, t) =
1

2
√
π

(χt)−1/2 exp

[
− s2

4χt

]



NON-LOCAL PARALLEL TRANSPORT

I For nonlocal parallel transport q = qαb̂ is an integral operator
I For a general underlying non-Gaussian (Levy α-stable)

stochastic process [del-Castillo-Negrete,2006]

qα =
λχ

π

∫ ∞
0

T (s + z)− T (s − z)

zα
dz , 1 < α < 2

In the α = 1 limit, q1 reduces to the free-streaming case
[Hammett-Perkins 1990; Held-Hegna-Callen-Sovinec 2000].

I The heat transport equation becomes a fractional diffusion
equation along the field lines

∂tT = χ‖∂
α
|s|T , F

[
∂α|s|T

]
= −|k |αT̂

I For the free-streaming case α = 1 (in an unbounded domain
with no sources)

G1(s, t) =
(χt)−1

π

1

1 + (s/χt)2



TEMPERATURE MIXING IN MAGNETIC ISLAND

I Periodic, straight cylinder B = B0(r) + B1(r , θ, z)

I Helical equilibrium: B0 = f (r) êθ + b0 êz

I Single mode, integrable perturbation:

B1 =
1

r

∂Az

∂θ
êr −

∂Az

∂r
êθ

Az = A(r) cos (mθ − nz/R) .
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WEAKLY CHAOTIC FIELD

I Perturbation with only two, weakly overlaping modes
I Fractal mixture of chaos, islands and KAM curves
I Initial condition T0 = 1− 2R2ψ, with ψ = r2/(2R2)
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FULLY CHAOTIC FIELD

Twenty one, strongly overlaping modes
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Poincare plot shows fully stochastic phase space
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Magnetic field exhibits the expected quasilinear diffusion in (ψ, θ).



RADIAL TRANSPORT OF HEAT PULSE
IN FULLY CHAOTIC FIELD

I Local (diffusive) parallel transport q = −χ‖
[
b̂ · ∇T

]
b̂

I Cylindrical shell i.c. T0 = exp
[
−R2 (ψ − ψ0)2 /σ2

0

]
I Second moment σ2 =

∫
(ψ − ψ0)2 〈T 〉θ,z dψ exhibits the

expected sub-diffusive scaling

σ2 ∼ tγ , γ ≈ 1/2
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NON-GAUSSIAN SELF-SIMILAR TEMPERATURE EVOLUTION
LOCAL PARALLEL TRANSPORT CASE

Radial temperature profile exhibits self-similar evolution

〈T 〉θ,z (ψ, t) = (χt)−γ/2 L(η) η = (ψ − 〈ψ〉) /(χt)γ/2

with subdiffusive scaling exponent, γ ≈ 1/2 , and non-Gaussian
stretched exponential scaling function ,

L = exp [− (|η|/µ)ν ] , ν ≈ 1.6
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RADIAL TRANSPORT OF HEAT PULSE
IN FULLY CHAOTIC FIELD

I Non-local (“free-streaming”) parallel transport

q(s, t) =
λχ

π

∫ ∞
0

T (s + z ; t)− T (s − z ; t)

z
dz

I Second moment exhibits the expected diffusive scaling

σ2 ∼ tγ , γ ≈ 1
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NON-GAUSSIAN SELF-SIMILAR TEMPERATURE EVOLUTION
NONLOCAL PARALLEL TRANSPORT CASE

Radial temperature profile exhibits self-similar evolution

〈T 〉θ,z (ψ, t) = (χt)−γ/2 L(η) η = (ψ − 〈ψ〉) /(χt)γ/2

with scaling exponent, γ ≈ 1 , and non-Gaussian scaling function,

L = A
1 + e−η

2/σ2

1 + |η/µ|3
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EVIDENCE OF NON-DIFFUSIVE RADIAL TRANSPORT

I In the standard diffusion paradigm the study of radial
transport is based on the Fourier-Fick’s prescription

〈q · êψ〉 = −χeff 〈∇T · êψ〉
I Parametric curves tracing the value of the flux 〈q · êψ〉 and

the gradient 〈∇T · êψ〉 as function of ψ at two different times
Diffusive parallel transport Free streaming parallel transport
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Multivalued, time dependent parametric curves inconsistent with
quasilinear diffusion models (e.g., χRR = v||DM).



CONCLUSIONS

I Although the standard diffusion paradigm has been
successfully applied to describe transport, there are important
cases in which it fails to apply.

I Signatures of non-diffusive processes include: non-Gaussian
and non-Markovian statistics (due to long range correlations,
trapping effects and long flights); fast propagation
phenomena; multivalued flux-gradient relations; up-hill
transport.

I We have proposed a class of non-local models for non-diffusive
transport, in which the flux depends on the whole spatial
dependence and/or the time history of the gradients.

I We applied the non-local model to large variety of systems
including: chaotic and turbulent transport, and perturbative
transport experiments.



CONCLUSIONS

I Proposed a Lagrangian Green’s function method for accurate
and efficient computation of parallel (χ⊥ = 0) transport.

I The method applies to local and nonlocal closures, integrable,
weakly chaotic and fully chaotic 3-D magnetic fields, with
sources, and general boundary conditions.

I Studied temperature mixing in single-mode magnetic islands
and fully resolved the fractal structure of the temperature
devil-staircase profile in weakly chaotic fields.

I Showed that effective radial transport is not diffusive in fully
chaotic fields. Use of quasilinear diffusion for radial
temperature transport (e.g. χRR = v||DM) doubtful!


