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ELMs Have Been Shown to be Conirolled by RMPs

ELMs are dangerous to in-vessel components

— CFC and tungsten material limits =>W¢,,, at the divertor <1 MJ
* Present Scaling = ~0.15W 4= 15-20 MJ (ITER W 4= 100-130 MJ)

e Tokamak ELMs: thought to be ballooning-peeling instability
— Bootstrap current kink + ballooning mode

e Addition of 3D Resonant Magnetic Perturbation = ELM contirol
— Islands change pressure profilee
— Penetration depth of RMP into rotating plasmae

e 3D RMPs (6 B/B~10-3) found to both suppress and destabilize ELMs
in fokamaks

— DIII-D, ASDEX-U = Supypression
— NSTX, MAST, COMPASS-D = On-demand triggering

Understanding missing between ELM control & plasma response
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Plasma Response to RMP not Well Understood =

Need to Determine the Internal Magnetic Topology

e How does the plasma respond to 3D Resonant Magnetic
Perturbations (RMPs)?

— Fi ' ' ion¢e
Field screening and/or island formationt SOL islands in Tore Supra™*
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* Past measurements agree with
vacuum modeling

— Islands imaged in Ohmic discharges
— Strike-point splitting in H-mode ﬂ_

— How does inferior H-mode respond? 2(';(

 Magnetic topology measurements desired to understand
plasma response to 3D magnetic perturbations

— Needed for extrapolation of ELM control to future machines

D”’-D **T. E. Evans et al., Phys. Plasmas 9 (2002) 4957 *’gIADKGE
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Ovutline: Internal 3D Magnetic Topology

Measurements on DIlI-D

Approach: Pin-hole based tangential soft X-ray imaging
system in the X-point region of a diverted tokamak

* Diagnostic concept & implementation
— Straightforward approach + new technologies

— 2011 run campaign = First data

* Diagnostic simulations & assessments — data interpretation is
critical

— 3D SXR synthetic diagnostic model developed

— Inversion analysis developed & tested
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Principle of Measurement Motivated by Core

Tangential SXR Systems on LHD, NSTX, TEXTOR

DIII-D Columnar Csl:Tl

Icross-section scintillator

Pinhole & -
cut-off foil

Fast lenses for imaging &
coupling

Low-noise;
high bit-depth
CMOS camera

Coherent

Fiber-bundle

* Successfully used to image core islands using inversion methods*
 Adapted to diverted H-mode islands

— Higher T, (> 1keV); Filtered for edge emission; Flux expansion ~ 10:1
 Edge SXR imaging realized through new technologies**

— Scinftillator = columnar Csl:Tl = high efficiency & resolution
— Camera = 16-bit sCMOS w/ 4GB on-board memory; up to 100 fps

D”’_ D * Ohdachi, et al. Plasma Science Tech. (2006) O AK
AN **Shafer, et al., Rev. Sci. Instrum. 81, 10E534 (2010) RID GE
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DIlI-D Edge SXRI System Implemented During 2011 Run
Campaign
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Tangential

«/ Vlew of sxms N

Csl:Tl Scintillator

Imaging Optics
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Visible Optics Used to Couple to sCMOS Detector

Machine-side Optics 8mm x 10mm

Coherent Fiber
Bundie

~ 50 LP/mm res. Detector
Assembly

s
”

Scintillator Vaccum Port f/0.95 Coupling 146-bit Andor
Window Optics Neo sCMOS
Camera
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DIlI-D First Data Shows Hot Core & Plasma Boundary

 Piggyback data to-date

 Dedicated experiments in late
Sept. / early October

DII-D
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DIlI-D First Data: A Movie
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ELM Events Correlate with Localize Changes in eSXR
Emissivity Signal
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Variation in 2D eSXR Emissivity Signal Attributed to
Edge Pressure Gradient Changes
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Modeled Phantom Images (Chordal-Integrated) &
First Data Loosely Correlate
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 Images do not corrected for optical distortions (eg, flat-field,
pin-cushioning); except Scheimpflug

— Need hardware in-house + break from experiments
 Image inversion for 3D structure characterization on the way
— Need optical corrections & good plasma targets
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Phantom Image Constructed via Synthetic Diagnostic

Coupled to 3D Emissivity Estimates

3D Emissivity

-
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Synthetic Diagnostic
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ﬁ/ X-Ray Filter
]
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\

SXR Emission
model

e 3D emissivity model:

{
Optical Efficiency

2D Phantom Image

— Perturbed 3D B-field via field line tracing & simple models

— 1D profiles via diagnostics (e.g. Thomson Scattering, CER, etc.)

— CHIANTI astro X-ray model (continuum + line radiation)

* Axis-symmetric SXR estimate + synthetic diagnostic matches NSTX

L-mode
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Image Inversion Needed to Interpret Island Structures

in Measurement

* Line integration masks structure in local SXR emissivity.

 To begin: Inversion methods investigated for stationary structures
— Most difficult for data interpretation
— Frequency locking / phase subtraction more robust, not examined

Line Integrated
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Simple Model Used to Generate 3D SXR Emission for

Synthetic Diagnostic

e Turns 1D flux functions, f(¢¥) to 3

3D based on perturbed 3D ¥

— 3D ¢ estimated via FL fracing 2

or simple models

* Assumptions: x|, >> x 1|

— Radial transport coefficients
implicit in profiles

Z (m)
Z (m)
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Phillips-Tikhonov Regularization & Geometry

Assumptions Used to Invert Images

 Image modeled with:
S=L-E+e

— S =line-integrated image measurement

— L = Geometric transform matrix
e Here, emission assumed constant along field lines

— E = Local SXR intensity; e is measurement noise.

* Inversion is ill-posed; regularization needed

e Phillips-Tikhonov (PT) regularization** incorporates diffusive
smoothing via Laplacian cost function, C

~ Minimizes: ~|C-E|* +|S — L-E|* /M
- Linearized Operator: [ (y) = (L*L+yMCTC) " LTS
e ¥ ~weighting factor

D”’_D **Iwama et al., Appl. Phys. Lett (1989), Ohdachi et al., Plasma Sci. & Tech. (2006). OAK
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Phillips-Tikhonov Method Allows Control of Noise via

Smoothing Operator

 Smoothness controlled with weighting factor, 7, in linear operator:

B (7) = (L"L+yMCTC)  L”S
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Results Found to be Insensitive to Small Changes in

Inversion Operator

* Inversion operator depends largely on geometric transform, L
— Test different operators using perturbed FL (Lg,p) Vs equilibrium FL(Lgg)

Inversion
Operator uses
RMP Perturbed

Field Lines
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Modeling of Variable Island Widths Used to Test Noise

and Size Sensitivity of Inversion

e Single helicity island model used to generate 3/1 island near X-
point with widths varying 1-11 cm
e J.E. Menard et al 2005 Nucl. Fusion 45 539

 Radial cut through X-point illustrates width (W, ,; ~ 10 * W .451ane)

* Integration time, t. ,, is controls noise
— Models realistic dark, read and photon noise sources

Inversion Flow Chart
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Small Islands (~ 3 cm) Can Be Measured with Only a

“Coarsely Gridded” Phantom Image

* Algorithm optimized to 64x64 SXR Inverted Emissivity (A.U.)
grid based on convergence | |
time Source

Inv. t,,=1 ms y=5e-1
Inv. t,,=10 ms y=le-2

2.5

— Plans to double grid size
under development

e Comprehensive scan
includes size, smoothing, and
noise effects

e Smaller island detection
needs longer integration for
better SNR

— 3 cmisland near X-point is ~3
mm at midplane

1.0 1o NY 10 IR
* Inversion is robust for large 08 09 1.0 1.1 08 09 1.0 1.1
island sizes (> 5 cm) Radius (m) Radius (m)
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Inversion Methods Suited to Investigate Local

Emissivity due to Topology Changes

e Philips-Tikhonov method well-suited for image inversion
— Accurately reproduces source

— Effect of redlistic noise countered by integration time (or smoothing)
— Perturbed field line structure not needed for Inversion
— Island width reproduced down to ~3 cm with 64x64 grid

e Allows interpretation of imaging measurements for island structures
— Can discriminate between islands and closed flux surfaces
e Can distinguish small islands, given flattening is sufficient
— Coversregion wide range 0.7 < ¢, <0.98
 |If screening expected, 0.95 < ¢, is target region
e |f sfrong penetration, 0.7 < ¢, <0.85 is target for intact islkands
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Summary: Methods to Improve Understanding of 3D

Field Effects in Tokamaks is Ready for Exploitation

e Measurement of island structure will be a key factor for
understanding RMPs ELM suppression

 New pinhole-based SXR camera implemented in X-point region
— Exploit flux expansion for island measurements.
— Efficient, high-resolution Csl:Tl, high sensitivity sSCMOS camera

* First data obtained in DIII-D 2011 run campaign

— Inifial images are similar to past modeling (phantom images)
— Local changes in eSXR emissivity = Edge gradient changes

 Development of analysis methods is a key aspect for qualitative
understanding of data

— Course-gridded PT regularization suited for image analysis and access
to island flattening ~ 3 cm near the X-point
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