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Summary 

• Wall clock times can be an issue for some simulations—
parareal is one approach to addressing this issue. 

• At least one model of plasma turbulence can be accelerated 
(wall clock) with parareal. 

• Use of a simulation framework, the Integrated Plasma 
Simulator, will enable new applications with 
– less coding work; 
– less demanding solver development; 
– reduced and more efficient  use of HPC resources. 
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Parareal is an algorithm for iterative parallelization of 
time 

• J. Lions, Y. Maday, G. Turinici, “A parareal in time discretization 
of pde’s,” CR Acad. Sci. I – Math. 332 (7) (2001) 661–668. 

• Applications include CFD, heat transport, MD, chemical 
kinetics, and many more. 

• Parareal requires a fast coarse solver, G, and a fine solver, F 
– F  contains the desired physics and resolution 
–  G  is a fast coarse-grained solver that has enough physics, 

resolution, etc., to allow effective convergence. 
• Also required are: 

– A measure of convergence; 
– Operators for transforming states of G and F  as inputs to F 

and G, respectively; 
– Initial states for F and G. 
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Parareal:  the algorithm 

• Represent the state of the system by:                  
where  
 i   => time index and  
 k  => iteration index. 

• The coarse and fine solvers can be represented as propagators 
that take          to         . 

• Namely                       or                      . 

• The heart of parareal is the iterate: 

 with initial conditions          and first iteration                      and                
   . 
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A simple example 
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First (0th) iteration:  run coarse all the way, use as 
initial condition for parallel fine calculations on the 
slices (10 total) 
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Four superposed iterations show convergence in 
~two iterations 
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Large high-performance computers with > 105=>6,7,… 
processors are the tool of choice to meet our goal of 
high-fidelity simulations 

• Spatial domain decomposition is an effective tool for using 
HPC capability. 

• However, many  fusion simulations are effectively limited by 
time dependence.  Examples include: 
– Extended MHD (although improved, implicit, algorithms 

(e.g., PIXIE3D, M3D-C1)  may (at least partially) break this 
seeming impasse);    

– Integrated simulations; 
– Microturbulence. 

• Implicit algorithms, when developed, are often only a partial 
solution. 

• In many of these cases,  we would be willing to use more 
compute cycles in favor of reduced wall-clock time. 
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Comments 

• Parareal always converges, but how well depends on the 
coarse solver. 

• Developing parareal for an application requires: 
– Finding a good coarse solver; 
– Finding operators to move states back and forth between 

coarse and fine solvers; 
– Finding a convergence measure for statistical states. 

• Given that we know what to do (above), implementation within 
existing code is often tedious: 
– Requires embedding fine, coarse, convergence, and raising 

and lowering procedures within one executable using, for 
example, multiple MPI com worlds for parallelization; 

– Must be done again for every new application. 
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The Coarse solver is the determining factor:  a wide 
variety of techniques  have proven effective for 
particular applications 

• Reduced spatial and/or temporal resolution/precision. 

• Reduced models (POD or eliminate small eigenvalues). 

• Implicit time advances. 

• Simplified physics.  

SciDAC 2011 
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BETA is a pseudo-spectral solver for model DTEM 
physics [Samaddar, Newman, Sanchez*]  

• Hasagawa-Mima (model drift wave turbulence): 

 

 

• For the coarse solver: 
– Reduced spatial resolution; 
– Faster, less precise time integrator 

• For fine to coarse:  truncation 

• For coarse to fine:  keep high wave number coefficients from 
previous iteration (match slope, use random phase for k = 1). 

• For convergence:  total mode energy was shown to be a good proxy 
for convergence of low k modes.   
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Example:  convergence (to 1.5e-6) in seven 
iterations for 88 time slices--speed up ~10 
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The successful application of parareal to BETA 
motivated the implementation of parareal using the 
IPS 

• The goal of this effort was to enable much faster 
implementation and development of parareal for new 
applications: 
– avoid programming issues of bringing multiple components 

of parareal into one executable; 
– a separable coarse solver component would facilitate 

experimentation with different approaches; 
– BETA implementation would provide a template for new 

applications of parareal. 

• The Integrated Plasma Simulator (IPS) is a framework that was 
developed by the Simulation of Wave Interaction with MHD 
(SWIM) SciDAC project that was jointly sponsored by the 
Fusion Energy Science and Advanced Scientific Computing. 

SciDAC 2011 
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The Integrated Plasma Simulator (IPS): 
A Light-Weight Python Framework 
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Ongoing applications of the IPS 
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Examples of  fusion applications within the SWIM project 
• Whole device modeling – ITER discharge simulations 
• Studies of RF stabilization of MHD instabilities in tokamaks 
• Studies of generation of energetic particle populations by RF waves 

Fusion applications external to the SWIM project 
• ITER organization (Cadarache France) – transport modeling 
• U. Alaska – extending parareal algorithm to gyrokinetics simulations 
• Plasma State adopted by several projects as a medium of data 

exchange 

Applications outside fusion 
• Being used in project to simulate lithium ion batteries under Energy 

Efficiency and Renewable Energy (EERE)--Computer Aided 
Engineering for Batteries (CAEBAT) 

• Discussions with UC Berkeley on application of IPS to ground water 
percolation 
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IPS sequential implementation reproduced 
(exactly) the MPI, single-executable result 
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Task flow for sequential parareal 

coarse 
stop 

coarse 
start 

fine 
start 

fine 
stop 



first_slice = 1  
num_converged = 0  
for iteration = 1, max_iterations  
   for slice = first_slice..num_slices 
      coarse_solve(iteration, slice)  

   forall slice = first_slice..num_slices 
      fine_solve(iteration, slice)  

   for slice = first_slice..num_slices  
      test_convergence(slice)  

   num_converged +=  
      first_non_converged_slice - first_slice  
   if (num_converged == num_slices)  
      end // SUCCESS  
   else  
      first_slice = first_non_converged_slice  
end //Failed to converge in max_iteration 

IPS Parareal employs multi-task parallelism for 
fine solves using a task pool 

26 May 2011 
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The importance of the coarse solver, can be seen if we 
estimate the speed up 

• Model parameters; 
– Time for one coarse slice 
– Time for one fine slice 
– Number  of slices:   N  
– With 

 
– The time for a sequential run is give by 
– For a parareal run the time is 
– where K is the number of iterations to convergence 
– And the speed up given by the sequential/parareal ratio   
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An examination of the work flow suggests that the time 
for the coarse solver can be hidden by changing the 
work flow to execute a task when the data are 
available 
• Demand on the coarse solver is reduced by ~K 
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Coarse and fine executions overlap, and tasks from 
several iterations are carried out in parallel 
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The event based parareal implemented with the 
IPS showed the expected gains in wall-clock times 
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A 2x gain in processor utilization was also realized 
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A semi quantitative empirical model for the 
convergence rate,         , was developed for each 
coarse solver (VODPK and 2nd and 4th order Runge-
Kutta) for BETA 
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The data-driven parareal shows substantial gains 
even for previously ineffective coarse solvers—all 
coarse solvers are now ‘good’ for weak scaling 
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weak scaling adds work (slices) 
in proportion to resources (processes) 
which can be CPUs, nodes or groups 
of nodes 
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Large improvements in gain for all solvers are also 
expected for strong scaling 
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Work on slices with ~unity error is likely wasted 
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Greater than 5x reduction in work was obtained 
with ‘dynamic slice addition’ 
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Summary 

• Implementation of parareal in the IPS enables faster and more 
efficient application of parareal to new problems. 

• The use of data-driven task execution using the event 
capability of the IPS does substantially ease the difficulty of 
finding an effective coarse solver for these new applications 
and improve processor utilization. 

• Dynamic slice addition provides longer simulation times 
without increases in computational resources. 
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The IPS framework, developed by computer scientists,  
enabled these advances 

http://swim.gat.com:8080/ 
http://cswim.org/ 
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