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Theses

• An interpretation of the observed ‘healing’ of vacuum magnetic islands
on LHD as being due to the properties of the plasma flow.
– Reminiscent of ‘mode locking/unlocking’ physics of tokamak/RFP

physics with two asymptotic states
• Large nonrotating island locked to an external field error source
• Rotational suppression of vacuum island  --- eddy currents

flowing at the rational surface shield the external field error from
penetrating

– Transitions between these two asymptotic states are described by
coupled torque balance and island evolution equations.

• Emphasis on the important role of neoclassical physics on flow
profiles in conventional stellarators

– Initial comparisons between theory and experiment are favorable
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LHD experiment includes vacuum island
-Major radius R0 = 3.5~4.1[m]
-Minor radius a  ~ 0.6[m]
-Magnetic field Bt ≤ 3[T]

-Super conductor coils
  A pair of helical coils L/M = 2/10
  3 pairs of poloidal coils
-Perturbation coil system (RMP)
  Static magnetic island m/n=1/1

-Diagnostics
  Thomson scattering system
  Charge-exchange spectroscopy
  Magnetics

- Intended magnetic island
 m/n = 1/1
 Non rotating

Flattening

Seed island
m/n=1/1

[NARUSHIMA, Y., et al., PFR. 2 (2007) S1094]
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Depending on parameters, the island 
may grow or be suppressed with β ≠ 0

Seed island
m/n=1/1
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 Growth and healing depends on β and
ν 5

Island healing occurs at high β, low ν
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1 -ωE×B increases from
t = 2.34s to 2.54s prior to island being
healed

2 ΔΦr
m=1/Bt starts decreasing at t = 2.62s

(Island width decreases)

3 -ωE×B further increases from 6 to
13krad/s

4 Δθm=1 starts shifting (rotating) to e-dia.
direction at t = 2.67s

5 Healing

6

Abrupt flow profile change at healing 

From Narushima et al, IAEA ‘10
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Outline

• Background
• Magnetic island asymptotic theory
• Torque balance relation
• Healing a locked island
• Mode penetration into a rotating plasma
• Summary
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Finite β healing of magnetic islands in
stellarator configurations has been studied

• Plasma pressure effects alter nonlinear island
widths through Pfirsch-Schluter currents
(among other effects)
–  β healing if the phase of the resonant

Pfirsch-Schluter current is π radians out of
phase with respect to the vacuum island

– Analytic understanding (Bhattacharjee et al
‘95)

--->  However, efforts to model LHD island
physics with these models failed ---
Narushima NF ‘08

From Hayashi et al PoP ‘94 using HINT
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LHD observations are reminiscent of mode
locking/unlocking physics of tokamaks

• In the presence of externally produced 3-D external magnetic
perturbations, two classes of problems are generally of interest in
tokamaks/RFPs
– For tearing stable, plasmas, resonant external source provides a

source for island formation
• Mode penetration inhibited by plasma rotation
• At high enough resonant field amplitude, forced reconnection

– Interaction of a rotating magnetic island with a resonant field error
• After a sufficient field amplitude is breached, island ceases to

rotate and becomes ‘locked’ to the external 3-D field
• Mode locking is to be avoided --->  Often leads to disruptions
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A theoretical construct for understanding
tearing mode/field error interaction has

developed
• Interaction of tearing modes (both stable and unstable) with resonant

external 3-D magnetic perturbations is governed by coupled
electromagnetic and fluid flow information (Fitzpatrick, NF ‘93)
– Island amplitude and phase determined a coupled modified

Rutherford theory and torque balance
– For tearing stable plasmas, two asymptotic states

• Predictions for transitions between asymptotic states

Large rotation, 
Small island

Small rotation,
Large island

“locking threshold”

“unlocking threshold”

! 

˜ B locking
3"D # ˜ B unlocking

3"D
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Magnetic fields are described as the sum of
the two fields

• Magnetic field

– Island formation at the rational surface ι/2π = no/mo

– Helical flux function describes island of width w

• In vacuum, resonant component of 3-D field described by
AV = Ao

Vcos(moα − Δφ)
– Without plasma response --> locked island
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Analytic description of island formation in
3-D equilibria use tearing mode formalism

• Matched asymptotic solutions
– Outer region --- linear marginal ideal MHD --- singular at

rational surfaces  ---> asymptotic matching data Δ’
– Toroidal and helical coupling of harmonics.  To simplify the

analysis, we concentrate on the dynamics of a single island
chain and assume that that response at the couples
surfaces are small

– Outer region affected by boundary condition

•  Δo
’ < 0 indicating tearing stable

•  ΔBC
’ ~ AV

! 
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Matched asymptotic solutions include the
effects of the external 3-D source

• Neglecting variations in the geometric coupling to other harmonics in
the exterior region solution

– Asymptotic matching

– In the vacuum limit
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Two cases to consider

• Locked island --->  No Island phase velocity
– Island rotates with plasma ->  No plasma rotation at the rational

surface
– Healing criteria = conditions under which plasma response causes

the island to unlock from the wall.
• Plasma rotates
• No island

• Mode penetration --->  Plasma flowing at rational surface
– Plasma rotation inhibits the penetrationof the vacuum magnetic

island source
– Mode penetration criteria = conditions under which external 3-D

source produces a magnetic island
• Island formation
• Plasma rotation at rational surface ceases
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Inner layer solution describes the plasma
response

• Layer current responses segregated into ‘cosine’ and ‘sine’
components
– ‘cos’  components contribute to island growth/decay ---

contributes to generalized nonlinear Rutherford equation
– ‘sin’ components describe a localized electromagnetic

torque

• For simplicity, we’ll neglect pressure driven contributions to ‘cos’  
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In conventional mode locking theory,
viscous torque balances electromagnetic

torque
• Momentum balance equation with phenomenological cross-field

viscosity (Fitzpatrick NF ‘93)

– Localized TEM ~ TEM0δ(ρ − ρo)b X n balance by viscous
toruqe in steady-state

• Viscous torque determined by properties of flow profile
– In tokamak, strong neoclassical poloidal flow damping,

undamped (weakly  damped) toroidal flows
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Momentum balance equation includes the
effects of cross field viscosity

• Momentum balance equation.

– In the absence of islands

– From momentum balance
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For a locked island, 1/ν neoclassical
transport operative at high temperature

• Viscous stress component denotes neoclassical transport

– For high T, low Er plasmas

– C1/ν ~ εeff
3/2 for conventional stellarator

• With a neoclassical transport model, the momentum balance
equation becomes a transport equation for Ωα

– More generally, nonlinear dependence on Ωα --- multiple
roots
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In the presence of a locked island, a similar
procedure can be used to determine rotation

• In the presence of a locked island

– Transport equation for <Ωα> obtained from momentum
balance! 
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With large neoclassical transport, a flow
boundary layer is present near the island

• Momentum balance provides profile near island

– Locked island condition provides internal boundary condition
at Ψ* = Ψ*

sx.  Produces boundary of width δr near island

– Viscous torque at rational surface
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Torque balance equation determines self-
consistent Δφ

• From torque balance TVSθs + TEMθs = 0.

– For DΩ  < DA

– For DΩ  > DA steady state torque balance can’t be maintained -->
Viscous torque overwhelms electromagnetic torque  and the
plasma starts to rotate and the island is healed.

– ‘Healing criteria’
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Healing associated with change in rotation 
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The torque balance equation predicts a
critical condition for island healing

• The healing threshold is given by

– Assuming rotation scales with diamagnetic flows, and cross-
field viscosity is gyro-Bohm, a critical-β as a function of ν*
can be derived! 
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The island width is dramatically reduced in a
rotating plasma

• Linear theory used to describe plasma response

–  ΔL denotes the layer response with layer time τL

– In many practical applications ωτL >>1
– Island width and phase
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Torque balance predicts bifurcation process
between asymptotic states

• Torque balance has 3 solutions for ω

Asymptotic solutions:
– DW small, only solution ω = ωo (large rotation, small island)
– DW large, only solution ω =  0  (small rotation, large island)
– Third root is dynamically unstable (not realizable)
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At lower ωo, only one solution is allowed

• As β is lowered, ωo decreases

– Only the small rotation root survives ---> Abrupt transition from the
high rotation/no island state to the low rotation/large island state

• “Locking” threshold when

• At locking threshold, DΩ <  DW  ---> Hysteresis

TEM(ω)

ω --> ω = ωo
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An interpretation of observations on LHD
can be made using theory

• Evolution of the stored energy, island width and rotation at rs
• At t = 0, large vacuum
Island
• For 0 < t < t1 viscous
Torque raises with β
• At t = t1, Dw = DΩ

Plasma abruptly jumps
To rotating state at rs
• For t1 < t < t2 flow shields
Island formation
• At t = t2 plasma abruptly
Jumps to the low rotation/
Large island state at rs

t -->

β

w

V(rs)

t=t1 t=t2
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Relocking of vacuum island is seen

28
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 These results suggest existence of hysteresis in

magnetic island transition dynamics.



Hegna, ORNL Seminar 2011
University of Wisconsin-Madison

Conclusions

• A theory accounting for the evolution of the magnetic island width and
phase is obtained from coupled electromagnetic and fluid flow
information.
– Theory generalized previous analytic calculations in cylindrical

geometry for tokamak/RFP applications.
– Unlike axisymmetric equilibria, neoclassical damping physics is

crucial for determining flow profile properties
– Generally, the healing criteria differs from penetration criteria.  --->

Hysteresis in the flow/island width evolution.
– The appearance of large shear flow near the island is a property of

locked islands in conventional stellarators --->  Transport barrier.
• Implication:  Plasma rotation physics can play a crucial role in healing

magnetic islands.  This physics is not incorporated in 3-D MHD
equilibrium codes (PIES, SIESTA, HNT,etc.).  However, extended
MHD codes should be able to include this physics.
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