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Outline 

•  LH transition physics 
–  Critical Er or Er shear may trigger LH transition 

•  X-transport model 
–  Er must be large enough to prevent non-ambipolar loss of ions 

following neoclassical orbits 

•  Dependence of PLH on RX 
–  Recent experiments on NSTX demonstrate dependence of PLH on 

X-point radius, consistent with X-transport model 

•  Other connections between X-transport and experiment 

•  Conclusions 
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The transition from L- to H-mode confinement is a 
hallmark of advanced tokamak (AT) regimes 

•  Characteristics of the L-H transition 
–  Observed in all high-power magnetic 

confinement devices 

–  Abrupt (sub-ms) reduction in the 
energy and particle transport near the 
plasma boundary 

•  Pedestal in electron and ion density 
and temperature profiles 

•  Increased core plasma pressure 
(Increased global energy confinement) 

•  Enhanced confinement of impurities 

–  Reduction in edge (and maybe core) 
turbulence is observed 

–  New equilibrium can be unstable to 
edge localized modes 

13 ms before LH transition"
23 ms after LH transition"

Te (keV)"

ne (cm-3)"

Pe (kPa)"

NSTX"
141607"
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Identifying the conditions that trigger LH transition 
is a priority for ITER and future AT reactors 

•  First principles model of LH transition 
–  Still under development after ~25 years of research 

–  Experimentally: approaching diagnostic resolutions and coverage 
needed to test theories 

–  Computationally: approaching computing power needed to run self-
consistent models with a large range of temporal and spatial scales 

•  Scaling relations of PLH versus global parameters 
–  Early observation: Power threshold for triggering LH transition (PLH) 

–  PLH is a global quantity that is fairly easy to measure routinely on 
many experiments 

•  Database indicates PLH scales strongly with Bt, ne and S 

–  Does not capture relevant physics, but guides designs while first 
principle models are being developed 
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LH transition may be triggered by a critical Er or Er 
shear that suppresses turbulent transport 

•  From MHD force balance: 

•  Hypothesis: LH transition at a critical Er x B shearing rate 
–  Er x B shear rate increases prior      

 to the formation of a pedestal 

–  Sufficient cross-field flow shear      
 can break up turbulent cells 

–  Achieve critical flow shear      
 suppress turbulence       
 larger gradients       
 gradients enhance Er      
 flow shear increases 

–  Not the full story, but a component of most LH transition theories 
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X-transport model: Er must be large enough to 
prevent non-ambipolar ion orbit loss 

•  Neoclassical orbits can transport particles out of plasma 
–  Banana width of ions is larger than electrons 

•  Orbits lost through X-point in diverted geometry 
•  Non-ambipolar: more ions lost than electrons 

–  Er quickly develops to alter orbits, maintain quasi-neutrality 
•  Rotation and/or ion gradients change on slower timescale for force balance 
•  Er ~ ion orbit loss current 

•  Ion loss orbits: 
–  Type-I: Bounce inboard       

 of X-point 
–  Type-II: Lost on single       

 pass        

Type-I!

€ 

v∇B , ion

Type-II!
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Neoclassical ion orbit code used to predict ion loss 
cone in velocity space 

•  Calculate ion orbits without electric fields, flows or collisions 
–  Single-particle guiding-center motion 
–  Fast calculation that depends only on the magnetic geometry 
–  Identifies “loss cone” in ion velocity space 
–  Provides tool for comparing the ion loss cone (~ Er) for different 

geometries 

•  XGC-0: Self-consistent calculation including collisions 
–  Experimental profiles of electron and ion   

 parameters constrain solution 
–  Electric fields computed self-consistently 
–  Ion, electron and neutral collisions 
–  Large computation requiring ~ 1 day to run 
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Non-ambipolar loss hole in ion velocity space in 
absence of Er , flows, and collisions 

1,000 ions launched from a single point on outboard midplane at psi_N = 0.96"
(Each ring is a contour of constant energy)"

Low triangularity 
on NSTX"
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Non-ambipolar loss hole in collisionless ion velocity 
space in absence of Er and flows 

1,000 ions launched from a single point on outboard midplane at psi_N = 0.96"
(Each ring is a contour of constant energy)"

Counter-traveling 
ions!

Low triangularity"

Bθ!

€ 

v∇B , ion
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Non-ambipolar loss hole in collisionless ion velocity 
space in absence of Er and flows 

1,000 ions launched from a single point on outboard midplane at psi_N = 0.96"
(Each ring is a contour of constant energy)"

Co-traveling ions!

Low triangularity"

Bounce outboard 
of X-point!
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Non-ambipolar loss hole in collisionless ion velocity 
space in absence of Er and flows 

1,000 ions launched from a single point on outboard midplane at psi_N = 0.96"
(Each ring is a contour of constant energy)"

Co-traveling ions!

Passing particles!

Low triangularity"

Bounce outboard 
of X-point!
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Non-ambipolar loss hole in ion velocity space in 
absence of Er , flows, and collisions 

1,000 ions launched from a single point on outboard midplane at psi_N = 0.96"
(Each ring is a contour of constant energy)"

Counter-clockwise!

Passing particles!

Type II!

Type I!

Bounce outboard 
of X-point!

Low triangularity"
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Non-ambipolar loss hole in ion velocity space in 
absence of Er , flows, and collisions 

1,000 ions launched from a single point on outboard midplane at psi_N = 0.96"
(Each ring is a contour of constant energy)"

Counter-clockwise!

Passing particles!

Low-Ti ions!
 Bounce inboard of 

X-point and stay 
confined on 

banana orbits! Lowest Ti ion on lost 
orbit is on passing/
trapped boundary"

Bounce outboard 
of X-point!

Low triangularity"
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ΔZdrift ≈ v ∇BΔtloss
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Shape of velocity hole depends on X-point radius 

•  Move large RX (δlow ~ 0) to small RX (high δlow) … 
–  Shorten type-I orbits  increase critical Ti for type-I loss 
–  Lengthen type-II orbits  decrease critical Ti for type-II loss 
–  More ions will bounce inboard of X-point 

Low Triangularity! High Triangularity!
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High-δ shape has a larger critical Ti and smaller loss 
cone for type-I orbit loss 

•  Move large RX (δlow ~ 0) to small RX (high δlow) … 
–  Shorten type-I orbits  increase critical Ti for type-I loss 
–  Lengthen type-II orbits  decrease critical Ti for type-II loss 
–  More ions will bounce inboard of X-point 

Low Triangularity! High Triangularity!
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The number of ions in the loss cone for a given local 
thermal Ti is largest for the low-δ shape 

The thermal Ti needs to be 1.6 times 
larger in the high-δ than low-δ to get 

an equivalent ion loss!

nloss / ni at psi_N = 0.96"
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Critical Ti for type-I orbit loss is about 1.35 times 
larger for high-δ than low-δ 

Lowest Ti ion that starts on the midplane and is lost via type-I orbit"
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Goal: Examine conditions leading to LH transition 
for different RX shapes on NSTX 

•  Expect Ti (~ PLH) to be higher at LH 
transition for high-δ than low-δ 

•  NSTX is an ideal device to test this 
dependence 
–  Low aspect ratio geometry (A ~ 1.4)  

•  Large grad-Bt, low collisionallity 

•  Large trapped particle fraction 
•  Enhanced grad-B drift 

–  Edge neutral density control with lithium 
coatings relaxes constraints on divertor 
strike points 

–  State-of-the-art diagnostics 
–  Advanced plasma shape control 
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Experiments build on previous results from 2009* 

•  With the same TF coil current … 
–  Match inboard Bt (i.e., inner gap) 
–  Match outboard |B| (i.e., outer gap and Ip) 
–  Match Bt0 (same R0) 

•  Try to match other PLH variables . . . 
–  Line-averaged density 
–  X-point height 
–  Plasma surface area 

•  Aim for transition > 40 ms after NBI power 
increase 
–  Avoid time of large dW/dt and evolving POH to 

improve PLH calculation 

* R. Maingi et. al., Nucl. Fusion, 50 (2010) 064010!
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PLH and (rough) Ti measurements are consistent  
with X-transport predictions 

Low triangularity!
142203!

High triangularity!
142216!

High triangularity – dotted"
Low triangularity – solid"

Ip"
Dα"

High-δ Ploss ~ 2.1 MW!
Low-δ Ploss ~ 1.3 MW!

Ratio: 2.1 MW / 1.3 MW ~ 1.6!

0.265 L!
0.282 D!
0.298 H!

0.298 L!
0.315 L!
0.332 L!
0.348 H!
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PLH for both shapes strongly influenced by  
edge fueling and pumping 

•  Scan Rx and neutral fueling / pumping 
–  Low triangularity: Rx = 0.64 (δL = 0.36) 
–  High triangularity: Rx = 0.47 (δL = 0.64) 

•  Full TRANSP analysis of six 
discharges to get NBI heating power 
–  Matched Bt, Ip, ZX 

–  Nearly matched nel 
•  Required more fueling for high Li shots 

•  Edge fueling and RX both have a 
significant effect on PLH 
–  20% - 40% change with geometry 
–  30% - 40% change with edge fueling 
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Some other interesting connections between 
experiment and X-transport model 

•  Toroidal electric field  Ware pinch of trapped ions 
–  PLH increases with larger |Vloop| 

•  Induce LH transition with Vloop spike toward zero 
–  Contributes to scaling of PLH with Ip 

•  X-point balance 
–  Ion loss cone could double in size for    

 balanced double null 
–  Grad-B in unfavorable direction 

•  Ion loss cone moves to higher energy due to                    
up-down asymmetry of plasma 

•  Loss time at least twice as large       
more sensitive to collisions 

•  PLH decreases with less divertor recycling 
–  Ion-neutral interactions near X-point detrap and thermalize ions 

R. Maingi et. al., Nucl. Fusion, 
50 (2010) 064010!
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300 mg lithium inter-shot "
(High pumping, high fueling)"

50 mg lithium inter-shot "
(Med. pumping, med. fueling)"

No lithium inter-shot "
(Low pumping, low  med. fueling)"

Preliminary observation: PLH scales linearly with 
initial divertor Dα intensity 

•  PLH increases with pre-NBI divertor Dα signal 
–  May be proportional to initial edge neutral density (nN) 

•  Indicates nN is important in PLH calculations 
–  NBI heating efficiency depends on nN 

–  Neutrals impact LH trigger (ion – neutral collisions) 

LH"
L"

LH"
L"

LH"
L"

Low – δ"
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Some other interesting connections between 
experiment and X-transport model 

•  Mass dependence 
–  Critical energy for ion loss ~ Zi / mi

1/2  PLH ~ mi
1/2 for Zi α mi 

•  As Ip decreases . . .  
–  Bout/Bin decreases in an ST, more trapped particles (lowers PLH) 
–  Banana widths become larger (lowers PLH) 
–  Loss time increases (increases PLH) 
–  E x B shearing rate decreases (increases PLH) 

•  Near linear Bt dependence 
–  Er x Bt shearing rate linearly depends on Bt at edge 
–  Ion loss time is shorter as Bt is decreased  
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PLH is similar for both shapes when BtX is matched 

•  TF current reduced for high-δ 
shape to match BtX 
–  PLH very similar to low-δ shape 

•  Dataset implies PLH ~ BtX
1.0 – 2.0

 
–  22% - 27% reduction in BtX gives … 
–  22% - 45% reduction in PLH 

142243 0.28s High-δL"
142420 0.28s Low-δL"
142419 0.28s High-δL"

Bt0 (T) RX (m) BtX (T) PNBI (MW) PLH (MW) 

0.55 0.47 0.86 1.9 1.1 
0.55 0.64 0.63 1.0 0.7 
0.40 0.47 0.63  1.0 0.6 
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Reducing BT by ~30% does not change the critical Ti 
for the high triangularity shape 

Critical Ti and loss hole size does not 
have a strong Bt dependence"

(Banana widths are independent of Bt)"

But the lower q95 reduces the 
loss orbit length and loss time. 
Thus, the ions are less 
susceptible to collision effects."
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Some other interesting connections between 
experiment and X-transport model 

•  Effect of collisions can be complicated 

–  Ion-electron collisions slow down ions  push loss cone to higher Ti 
•  Could manifest as a threshold in Te 

–  Ion-ion collisions 
•  Low density: Larger density increases rate of ions scattered into loss 

cone and number of ions in loss cone 
•  High density: Collisionality large enough to detrap ions in loss cone  

larger density raises the loss cone to larger energies 
•  Very high density: All ions detrapped, no X-transport effect 

Collisionality ~ ne / Ti
3/2"

PLH"

Collision time ~ loss time for 
Ticrit for collisionless calculation"
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Summary 

•  X-transport: Er must be large enough to prevent non-ambipolar loss of 
ions following neoclassical orbits 
–  Build-up of Er increases E x B flow shear rate, may trigger LH transition at 

some critical level 

–  Number of ions on loss orbits very sensitive to the local thermal Ti 

•  PLH observed to decrease with RX on NSTX 
–  Consistent with ion loss hole calculations that predict a lower thermal Ti is 

needed for the low-δ shape than the high-δ to achieve a given ion loss rate 

•  X-transport model predicts trends that are consistent with other 
experimental observations 
–  X-transport is only one of the ways to build-up Er, but could be a dominant 

contribution, especially in STs 
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