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Overview 
•  Motivation: Quasisymmetric (QS) stellarators have transport 

properties which lie between 2D and 3D limits 
–  Small radial neoclassical transport (similar to a tokamak) 
–  Reduced flow damping in the symmetry direction 
–  Need models that capture these physics 
–  What is the impact on the fluxes, flows, currents, and Er in HSX? 

•  Neoclassical transport calculations for HSX 
–  Including momentum conservation (MC) modifies parallel transport 
–  Better agreement with measured flows, currents when MC included 
–  Ambipolar Er calculations result in very large fields and strong radial shear 

•  Experimental electron thermal transport 
–  Te profiles strongly centrally peaked in QHS 
–  Peaking is caused by turbulence quenching via Er shear 
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HSX is Quasi-Helically Symmetric 
•  QHS: helical direction of symmetry in |B| 
•  Effective transform is larger than physical 

transform 
–  Algebraically modifies transport and equilibrium 

quantities relative to a tokamak 

HSX Parameters 
<R> 1.2 m 
<a> 0.12 m 

1.05→1.12  
B0 0.5 -1.0 T 

ECRH <100 kW 28 GHz  3 

Tokamak: 

QHS: 

ιeff ~ 3 



Motivation for Neoclassical Transport Calculations 

•  The neoclassical transport coefficients relate the fluxes, flows, and 
currents to the gradients (∇T, ∇n, ∇Φ) 
–  From ambipolarity the particle fluxes give Er 

•  Why should we care about neoclassical transport? 
–  Gives irreducible minimum level of radial transport 
–  Bootstrap current typically shows good agreement in tokamaks and stellarators 
–  Er agrees well with NC predictions in stellarators 
–  Er can reduce transport, drive transport barriers 

•  Sheared flow can suppress turbulent transport 
–  LHD results suggest that anomalous transport is lowered when NC lowered 

(possibly due to decreased zonal flow damping) 
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Kinetic Neoclassical Calculations 
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•  The NC transport coefficients are calculated by the DKES1 code. 
•  DKES solves the linearized drift kinetic equation (DKE) via a variational method 

using a pitch angle scattering (PAS) collision operator 
•  Kinetic view:  Lose interspecies collisions, collisional momentum conservation 
•  Fluid view: Lose frictional coupling, implies parallel flows are small or 

momentum balance violated 
•  Advantages 

•  Allows DKE of each species to be decoupled 
•  Conserves speed v, reducing dimensionality of problem 
•  Leads to fast computation for arbitrary B, collisionality, Er 

•  Disadvantages 
•  Parallel flows assumed small, momentum not conserved 
•  Intrinsic ambipolarity in (quasi)symmetric limit not recovered 

•  Justified in conventional stellarator with strong flow damping 

1) W.I. van Rij and S.P. Hirshman, Phys. Fluids B 1, 563 (1989), S.P. Hirshman, et al., Phys. Fluids 29, 2951 (1986). 



Kinetic + Fluid Approach: Use Fluid Moments to 
“Correct” Kinetic Coefficients 

•  The NC transport coefficients can also be calculated using a fluid 
moment approach1 
–  Analytic expressions exist for tokamaks, simplified stellarator fields 

•  Methods have been developed for general stellarator fields2 
–  Momentum conservation is enforced through parallel momentum balance 
–  Use coefficients calculated from kinetic methods to define viscosities 

•  Act as “correction” to kinetic approach (DKES) 
–  Calculate parallel flow from  parallel momentum balance 
–  Add flux driven by parallel flow to radial transport expressions 

•  These methods have been implemented in the PENTA code 
•  Want to understand how important this correction is in HSX 
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1) Hirshman (1977), Hirshman and Sigmar (1981), Shaing and Callen (1983) 
2)Taguchi (1992), Sugama and Nishimura (2003, 2008), Maaßberg, Beidler, Turkin (2009) 



Development of the PENTA Code 

•  Originally developed by Don Spong (ORNL) 
–  Electron-ion only, two terms retained in expansions 

•  Has been extended to include 
–  Multiple ion species of arbitrary mass, charge, temperature (impurity transport) 
–  Arbitrary expansion order (improves accuracy, allows for convergence checks) 
–  All three existing moment-method momentum correction techniques  

•  Intrinsic ambipolarity reproduced analytically and numerically in 
symmetric limit 

•  In principle, this method can be applied to the full range of 
configurations: 

Increasing effective ripple 

tokamaks rippled tokamaks quasi-symmetric conventional stellarators 
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Determining the Radial Electric Field in a Stellarator 

•  Fluxes in a stellarator are not intrinsically ambipolar; Er is determined 
by enforcing ambipolarity. 

•  LMFP with Te ≈ Ti results in three roots 
–  Ion root: ion flux reduced from Er=0 level 
–  Electron root: both species flux reduced from Er=0 level 

•  Electron root can be reached  
 by increasing Γe 

•  When Te >> Ti the ion root  
 solution may not exist near  
 the core 

8 



Ti 

Te 

HSX Can Achieve Electron Root Because  
Te >> Ti 

•  In HSX Te>>Ti over most of the 
plasma radius, with a strongly 
peaked Te profile 

•  For Ti≈100eV, ions experience a 
resonance at modest Er near plasma 
core 

•  The resonance occurs when poloidal 
velocity is canceled by the poloidal 
ExB drift 

•  Radial transport is increased near 
the resonance, and is strongly 
reduced for Er > Er

res 
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Pinj=100kW 

Radial Electric Field Roots in HSX 
ρ=0.1 
Te=2keV 
Ti=70eV 
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Pinj=100kW 

Radial Electric Field Roots in HSX 
ρ=0.1 
Te=2keV 
Ti=70eV 

ρ=0.3 
Te=750eV 
Ti=60eV 
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Pinj=100kW 

Radial Electric Field Roots in HSX 
ρ=0.1 
Te=2keV 
Ti=70eV 

ρ=0.3 
Te=750eV 
Ti=60eV 

ρ=0.5 
Te=300eV 
Ti=55eV 
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Radial Electric Field Roots in HSX 

•  Only electron root in core, and only 
ion root towards edge 
–  Somewhere in three root region there is a 

transition, with strong Er shear 
–  Determining shear layer involves 

perpendicular viscosity 

ρ=0.1 
Te=2keV 
Ti=70eV 

ρ=0.3 
Te=750eV 
Ti=60eV 

ρ=0.5 
Te=300eV 
Ti=55eV 
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Kinetic Model Well Describes Radial Transport 

•  Even in QHS the asymmetric effects 
are large enough to dominate the 
radial transport 

•  Small change to ion root fluxes, Er  
•  Effect at large Er masked by 

resonance 
•  Larger effect could occur in HSX 

with large Ti and gradients (large 
flows) and small Te (collisional) 
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Lines: no MC   
Symbols: MC 



Parallel Transport is Strongly Affected by MC 
•  Both the electron and ion particle flows 

are affected by MC 
•  Ion flows are strongly increased 

–  Without MC the ion flows are almost zero 
–  Near the core the ion root solutions even 

exceed the thermal velocity 

•  Electron flows are decreased in the ion 
root, and change sign in the electron 
root  
–  Important when calculating parallel current 
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CXRS Flow Measurements 
•  CXRS measurements are the 

focus of work by Alexis 
Briesemeister 

•  Parallel flow measurements 
show good agreement with 
predictions including MC 

•  Indicate a transition to electron 
root occurs 

•  Without MC ion flows are 
much smaller than measured 

•  Comparisons to measurements 
for several powers, densities, 
configurations is an important 
validation of PENTA 
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Solving the Diffusion Equation for Er 

1) Shaing (1984), Maassberg et al (1993). 2) Hastings (1985, 1986) 17 

•  The radial electric field profile can 
be determined by solving a 
diffusion equation1 

•  DE (related to perpendicular 
viscosity) is generally not known2 
–  Solutions for different DE show a 

region of strong Er shear at r/a~0.25 



Strong Er Shear is Predicted in Region of Peaked Te 

•  The radial electric field profile can 
be determined by solving a 
diffusion equation1 

•  DE (related to perpendicular 
viscosity) is generally not known2 
–  Solutions for different DE show a 

region of strong Er shear at r/a~0.25 

•  Te peaking occurs within the 
strong Er shear region 
•  Er shear can suppress turbulent 

transport 
•  Similar values of DE used for W7-AS 

18 1) Shaing (1984), Maassberg et al (1993). 2) Hastings (1985, 1986) 



•  The 2D quasi-linear Weiland model has been 
used to model turbulent transport in QHS1 

–  Like a tokamak, QHS has a single class of trapped 
particles. 

–  With local geometry considerations, good agreement 
with 3D gyrokinetic GS2 growth rates. 

–  Stored energy and confinement times predicted within 
10% 

•  Predictive transport (NC + Turb.) simulations 
underestimate Te in core 

–  Turbulent diffusivity in this region is 10x experimental 
–  Transport can be reduced via ExB shear 

Applying a 2D Turbulent Transport Model to QHS  

1) Guttenfelder, (‘07,’ 08), Lore (‘10) 

Experiment 

Model w/o shear 
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DE = 0.05 m2/s 

DE = 1.1 m2/s 

ExB Shearing Rate >> Linear Growth Rate for r/a < 0.3 

•  ExB shear suppression is modeled using a linear 
quench rule:1 

–  γE = ExB shear rate  
–  γmax = maximum linear growth rate 

•  Shear suppression expected inside of r/a = 0.3 
Experiment 

Model w/o shear 

1) Kinsey (2005) 20 



Turbulence Suppression via ExB Shear can Reproduce Experimental 
Profiles 

•  ExB shear suppression is modeled using a linear 
quench rule:1 

–  γE = ExB shear rate  
–  γmax = maximum linear growth rate 

•  Er shear required to reproduce peaking of 
experimental Te profile 

•  Coupled turbulent and NC transport model can 
self-consistently explain measured Te profiles 

DE = 0.05 m2/s 

DE = 1.1 m2/s 
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CERC Transport Barriers 
•  Core Electron Root Confinement (CERC) transport barriers have been 

observed in several other stellarators1 

–  Characterized by peaked Te profiles, neoclassical electron root Er 

1) Figures from Yokoyama, et. al (2006, 2007) 

W7-AS 
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CERC Transport Barriers 
•  Core Electron Root Confinement (CERC) transport barriers have been 

observed in several other stellarators1 

–  Characterized by peaked Te profiles, neoclassical electron root Er 

•  One common feature is the existence of thresholds for achieving a 
CERC in Pinj and ne 
–  In other stellarators thresholds are attributed to ECRH effects (convective 

fluxes) 
–  W7-AS showed lower threshold when εeff increased – thought to be difficult to 

achieve CERC in QS configurations 

•  Experiments under carbonization indicate a threshold in QHS plasmas 
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Recent Experiments Suggest a CERC Density 
Threshold 

•  For same input power, small increase in density results in less peaked Te 
profile 
–  Pinj = 45kW 

•  At higher density a/LTe is 2x smaller in core 
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•  The higher density case results in ion root solutions across the entire plasma radius 
–  Core ion root is caused by reduced Te, ∇Te => reduced electron flux 
–  Without external drive the plasma would remain in the ion root 

•  Note that this threshold does not appear to require any additional fluxes (e.g. ECRH 
driven) 

•  CERC effects in HSX are consistent with NC predictions, unique among stellarators 
that observe CERCs 

Ion Root is Predicted Across the Plasma Radius 
at High Density 
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Future Directions 
•  PENTA is a useful tool for future HSX research 

–  Predictions of fluxes, Er, currents, flows consistent with QS geometry 
–  Comparisons of impurity and bulk flows 

•  Moving the shear location 
–  Off axis heating (2nd gyrotron online soon) 
–  Increase electron flux via symmetry breaking 

•  Characterization of threshold behavior 
–  Investigate effect of impurities (threshold higher in “clean” plasma?) 
–  Effect of symmetry breaking (threshold lowered with increasing εeff in W7-AS) 
–  Look for bifurcations in ECE signals 
–  GNET can be used to evaluate impact of ECRH fluxes 
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Conclusions 
•  Momentum conservation is important for NC calculations in HSX 

–  Parallel flows and currents strongly affected 
–  Better agreement with measurements when MC included 
–  Kinetic analysis appears sufficient for determining radial transport 

•  Neoclassically driven transport barrier in QHS 
–  Ambipolarity results in large Er with strong shear in same region of Te peaking 
–  Turbulent + NC transport model used to simulate Te profiles 
–  Core Te profiles only reproduced when ExB shear included 
–  Threshold behavior consistent with NC predictions 

•  Upgraded PENTA code available for future research 
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Effect of wall conditioning on the CERC 

•  “Cleaner” plasma has 
reduced temperatures, no 
peaking 
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