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DIlI-D Demonstration Discharges Meet ITER

Normalized Performance Targets

06t Baseline, qgs=3.1 1 * Four ITER missions addressed on DIII-D:
E Q=10in ITER ] . .
L S A W ] Baseline scenario; Q=10 on ITER at 1 =15
0.2 ol MA, with conventional ELMy H-mode
0.0t .
0.6F Steady-state, qg5=4.7 : operation
04F Q-5 in ITER E Steady-state scenario; full non-inductive

3(2, m operation with Q~5 at I, ~9 MA

T

0.6} : : .
04£Q=10InITER _ B Hybrid scenario; high neutron fluence at
02f G ; reduced current
00 131265;
0.6F : Advanced inductive scenario: Q220 and
e ; 700 MW fusion power production at
0.2F ] >

i Advanced Inductive, qg5=3.3 1331371 Ip_1 > MA

0. 1.0 2.0 3.0 4.0 5.0

Time (s) * Key ITER physics issues are discussed

2
G = ByHgo/qy5s is a measure of L.
fusion performance °* Projections to ITER

[E. Doyle, IAEA 2008]
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Baseline Scenario
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DIlI-D Baseline Scenario Match ITER Performance

Target

 |/aB equivalent to 15 MA operation =

on ITER, q95 ~ 3.1 151 I, (MA) -

101 — 2009 discharge (136337) .

* Match ITER targets for 8y and Hyg 0;)5 - — 2008 discharge (131498) -
 Performance projects to meet ITER

Q=10 target

— G = ByHge/9%5 . Measure of fusion
performance

 Absolute density up to ITER target of
1x102°m-3, n/ng,, ~ 0.65 (ITER 0.85)

e H-mode duration of ~3tR, same
normalizatidn duration as ITER

* Density control and stationarity
improved significantly
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Lower Density Baseline Discharge Developed to

Match Edge Pedestal Collisionality

e Density reduced by factor of = 2 10l VaB ITER target 1.415 T_
and temperature raised by: ’ Pxng (X1I0MW) N
~ Lowering Ip 055 st T

— Application of ECH

 Target Values for §, and Hg
maintained with lower
collisionality/density operation 3
— No loss in fusion performance

" Density (x1019m-3)

6+ Y
e Significant change in ELM 0 )
characteristics 1.0

MW S —

e ECH s dual purpose, also ECCD for _ITER target 0 1 v

NTM suppresion

0.01
2 I I
- Dy (aw)
l -
0 i —= 5 \ ]
0 1 3 4 5
D”’ -D Time (s)
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Transport Mechanism Changes Dramatically in ITER Relevant

Regime of Low Collisionality and Dominant Electron Heating

136337 High
136345 Low ECH ECH
|
2 ul
N .
E :
N
_ , _ 08 1.0
r/a r/a
» Significant change in local transport 10T
characteristics gl i ]
Al N ]
* Collisionality plays a key role in transporf 6; [
— Distinguish between ITG, ETG and TEMZ 4}
— Experiments indicate favorable Bt i
2r
e Dominant electron heating increases O
energy transport significantly 0.0 02 04 rla
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TGLF Reproduces Changes in Transport Processes As

Observed in Experiments

136345 Low 136337 High

10T
. Qe

TGLF modeling of
T.and T;:
— Fixed density

— Fixed pedestal
0 40-60% ELM
averaged profiles
— ExB shearing from
CER measurement

SCo N A O @

r/a

e Agreement within
typical range

m2/s
N w NN (é)]

e OQverestimate electron
fransport

e FASTRAN fransport
solver ' ' " a
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Changes in ELM Characteristics with Change in

Collisionality Probably Due to Change in P,,;/P;y

 Empirical scaling used for L-H
power threshold, P;, (Y. Martin, 8
et al., 2008)

—  P;,=0.049*Nn0.72B 0.8509
* High density discharges
operate with P;o;/Pry~1
throughout H-mode phase
— Large, infrequent ELMs

* Low density discharges have
Pror/Pm~3
— Smaller, more frequent
ELMs

e Initial ITER operation may
correspond to P;5;/P;y~1 case

— Confinement is at target
level, despite operation
close to predicted L-H
power threshold

i Density (x101% m3)

— High n, and collisionality (131498) -
— Low n,, and collisionality (136345)

. 2. 3, 4. 5.
Dill-D Time (s)
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C2 Simulation Shows Changes in ELM

Characteristics with P;o;/P;y

e Two Dimensional Coupled ! - Thea (keV) |
Core-Edge-SOL modeling ./ |
« Simplified ELM trigger 0 - - - . .
model 20 1 2 3 4 >
2 - D, (aw)
o = 2M;I§q (Zp) > acr 1- ‘ l J \
' 0_ LUl \ | J.Ew ‘ | ” ;

e Detailed Peeling- Time (s)
Ballooning mode stability
analysis needed
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Fractional Energy Loss at ELMs in Baseline Scenario

Substantially Exceeds ITER Limit

T ' ’ 1
n=6 Peeling-Ballooning | | |
Eigenmode (A.U.) ||| |

80

e Type |l ELMs in Baseline scenario
plasmas have large radial o ik |
extent . BEFORE ELM uj

E (80-99% of ELM period) 1‘1, i
M A | ”"l
NI LN
 Energy loss/ELM is > 10 % of S e it

total plasma stored energy, ~25 N
7 of pedestal energy - 2 1

131498 2
* e £ ST oo es et N

00 02 04 yy,, 04 0.8 1.0
N

. . v* ITER
* Fractional energy loss at ELMs 0.3 : .
exceeds ITPA scaling ' i m 2008
! -
. Reduction of loss in at o2 5
eduction of energy loss in at 2= | Baseline
lower collisonality discharges in ¢ i, <2009
counter to scaling observed in 2= ; ITPA Multi-Tokamak
ITPA database 3 ot i
— Most discharges in database
operate above Pqy | TER ’%glregrgth:le
0'% 01 = 0:1: ] 10
DIn=p "~ Pedestal Collisionality, Va*
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ECCD Provide First Demonstration of Preemptive Stabilization of

2/1 NTM in ITER Baseline Scenario Plasma

e ECCD directed at q=2
surface successfully - g
preempts destabilization 1L _

of 2/1 NTM:

— Stationary ELMing oL : : : e
H-mode with Qq:~3,
B.~1.8 2k .

Peccp (MW)

* Four gyrotrons, delivering

~2.5 MW to the plasma 61
— More than 1.25 MW 4
required 2 Density (x1019 m3)
e 2/1 mode turns on when s *
gyrotrons commanded off - n=1 Mirnov (mT)
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Reduced Plasma Rotation Reduces Confinement in

Baseline Scenario

L Pror (MW)
4 _
Peccp (MW)

2 L - =

. l Counter-NBI (MW) -
0 , \ N
3 T - T

Total NBI torque (N-m)

* Plasma rotation reduced by
adding counter-NBI in low
collisionality case:

— Modest 1/4 counter-beam
substantially changes rotation

— ECH in these discharges also
modifies rotation

* Confinement factor Hyg reduced by
~15%

200

. v, at p~0.25 (km/s
150F ?EP ()

. 100F
* Indicates need for performance g

margin to account for effect of i

lower rotation, etc. in projectingto

ITER - Hos
ITER target1. ~

—— All co-NBI (136345) N
—— With counter-NBI (138109) -
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Steady-State Scenario
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Fully Non-inductive Operation Demonstrated

in ITER Shape

1.0 e ——————— -

* Fully non-inductive operation 0.5 Ip (MA)
obtained in 8.5 MA equivalent 0.0
discharge with g = 3.1 '

— High bootstrap fraction
(~70%)

- Steady-state discharges 0.2¢ G :
utilize off-axis ECCD to et :
maintain stable q-profile with 8(1)
qmin z1.5 0.0 E: __________________________________ - _.—;

2 Vioop (V) 3

* G = ByHgs/ s -01; i

— Measure of fusion performance 3 Pne (MW)
6 Pec (MW)
OE
0 2 3 4 5
TIME (s)
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Fully Non-inductive Operation Demonstrated

in ITER Shape

1.0 e e o -

* Fully non-inductive operation 0.5 Ip (MA)
obtained in 8.5 MA equivalent 0.0
discharge with g = 3.1 '

— High bootstrap fraction
(~70%)

- Steady-state discharges 0.2¢ G :
utilize off-axis ECCD to e ;
maintain stable q-profile with 8(1)
qmin z1.5 0.0 : __________________________________ - _:

= Vioop (V) 3

¢ G = ByHgo/5s -01; i

— Measure of fusion performance 3 Pns (MW)
6 Pec (MW)
OE
0 2 3 4 5
TIME (s)
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Measurement and Simvulation Show

the Inductive Current Density is Small Everywhere

15 T T T 1.5
134372, 1=3600 ms "~ 134372,t=3610ms ]

Transport simulation

1.0 Kinetic EFIT 1 1.0 i (TRANSP)
<J.>_ (MA/m? -
1”70 (MA/M?) | E Db = 1.0 m?/s
<C
>3
05 A
=
1 Vv

0 0.2 0.4 0.6 0.8 1.0
Radius, p

Radius, p

 Measurement of inductive current  Transport code simulation

density - loop voltage analysis
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Trade-off Between Fusion Performance and Non-inductive

Fraction Seen with Variation in q,.

o Sitrong dependency of plasma
confinement on q95

 The thermal energy
confinement time decreases
with g95, generally following
the scaling of H?8

 fNI and fBS increase with
BNg95.

e The edge pedestal provides
typically ~40% of the total
bootsirap current, and its
height and width depend on
q95,

— the pedestal plays a key role
in optimizing the steady-
state scenario.
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The Electron and lon Thermal Diffusivity Appear to

Correlate Mainly with the Magnetic Shear

4 - o oo R e e e e S

3 i_ Xi/ XGB ,:' ‘v;::_ 7
B _,f. |.

2: Modeling E

1- T
i A, -

0 e S Xe/XcB

* Optimizing q profile is critical to simultaneously achieving f,=1
and Q=5 goal
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TGLF Simulations Reproduce Strong Transport Dependency

on q Profile

Experiment

(g scan at BN = 2.8; 136835/837/853/854) TGLF Transport Simulation

(g scan at BN = 2.8; 136835/837/853/854)

q Ne 8 q 10 Ne '
6l 8F ] 6l 8
6 6
41 1 s ]
>‘/ 4 >\_/ 4 -
2 7 2 2 F — ] 2 '
0 . . . . 0 0 . . . . 0
00 02 04 06 08 1.0 0. 00 02 04 06 08 10 0.
10 - - : ' ] 10
1 - 1

Te ] 0 Te 0 ‘

8k b 8 8 ] 81
6 B 6 6 6
4 ] 4 4 4
2 1 2 2 2
0 . . . . 0 . . . . 0 0
00 02 04 06 08 1.0 00 02 04 06 08 1.0 0. 0.
10 : : : : 10 : - : : 10 , 10
st Xe ] sl X ] gl Xe ] 8

6L 6L ] 6f ] 6l

4l 4 1 4k ] e

2t 2f ——— \— 2r ] 2r
0 : | . . 0 [ | | . 0 : . . . 0
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 10 O

r/a r/a rla r/a
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Predictive Simulation Suggests that a Larger Radius for the
Minimum of q Helps to Increase both the Fusion Performance
and f,

Dill-D

NATIONAL FUSION FACILITY J.M. Park/ORN FED Seminar 20
SAN DIEGO Au92010



Summary

Match to Expected Conditions for ITER Baseline Scenario has
been Significantly Improved
— Matched ITER collisionality target with no loss in performance

— First demonstration of 2/1 NTM avoidance using ECCD under ITER-
similar conditions

— Improved stationarity and density control
— Initial data on impact of reduced rotation on confinement

« The demonstration discharges address many key ITER physics
issues, e.g. transport, ELMs, optimum g profile, etc

- Data from these experiments have been used extensively to test
and develop theory and modeling for realistic ITER projection
and for further development of its optimum scenarios in DIlI-D

« DIII-D Evaluations of ITER Scenarios Will be Further Extended by
Applying New Tools: Off-axis NBI, Higher power EC, ...

Dill-D

NATIONAL FUSION FACILITY J.M. Park/ORN FED Seminar 21
SSSSSSSS AU9201 0



