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Non-collisional ion heating is observed in MST
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New diagnostic capability: measure T, and P

Tyar in the core of MST

_ _ perpendicular
« Good time resolution viewing chords

(10-100 kHz)

« Good spatial
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The Reversed Field Pinch is a low B toroidal
confinement device

ST

Br Reversed

- Low magnetic field allows for self-organization
« Susceptible to tearing instability




The Madison Symmetric Torus is a large,

moderate current RFP

R=15m |, ¥} 600kA  n,=0.4-40x10"m" p <26 %

a=052m B =05T T,o=0.2-2keV




Magnetic reconnection is impulsive and semi-
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ICRH by cascade of tearing mode fluctuations

has been a long-favored ion heating theory

« Assume magnetic fluctuation energy
is converted to ion thermal energy by
linear damping,
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 This heating rate is estimated to be
~ 10 eV/us for species with g/m=1/2
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Several theoretical models exist

» ICRH of ions from turbulent cascade of magnetic fluctuations:
» Perpendicular heating

» species dependence AT ~ g/m (or m9° for modified
theory)

» Stochastic heating from random walk in fluctuating electric field
» Perpendicular heating
» species dependence AT ~ m9>

 Viscous damping of parallel flows
« Energy deposited in parallel degree of freedom
* requires grad(v) ~ v4/p;




New result: heating efficiency ~ m'/2
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The CHERS diagnostic




CHarge Exchange Recombination

Spectroscopy

Perpendicular

. L I Fiber

1. Inject 50 keV HO with diagnostic hords ><x 7)), bundle
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2. Neutrals charge exchange with 0 +6 + +5%

C*6 impurities H +C"—H +C
3. Recombined ion (C*°) promptly C*S* —> C+5 + hv

emits de-excitation photon

4. However, electron impact 45 _ 154 _
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Electron impact excitation dominates signal VST

(D on-axis views

« A simultaneous, nearby
background measurement .
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Atomic modeling of fine structure is critical

ST

for low temperatures

- n=7-6 transition has 31 allowed 0.8 [T T T T T _
transitions (Al=+1, Aj=0,%1)
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- Can be non-degenerate due to i
L-S coupling 7 sl ]
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* Important for low temperatures,
T =160 eV with fine structure
T =263 eV without




Adjusting the ratio OVI/ CVI in the model has

: VST
a large effect on the goodness-of-fit
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- OVI dominated background (right) fit much better than CVI dominated

B

background (left)

- OVI/ CVI ratio in model can affect inferred velocity by up to 10 km/s




Longer line-of-sight for toroidal view gives P

lower signal-background ratio

Poloidal view
« 8 discrete viewing locations
« -0.7<r/la<0.7
« signal/ background ~ 0.25
« spatial resolution ~ 1 cm?
» separation ~ 4 cm

Toroidal view
e continuous viewing
* -0.6 <r/a<0.4 (design)
» signal/ background ~ 0.1
« spatial resolution ~ 4 cm?
» separation ~ 6 cm




Toroidal view design

- Utilizes existing MST porthole

» Design challenges
* non-ideal geometry
- multiple viewing locations

- sufficient light collection




CHERS data




In improved confinement plasmas, there is no
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reconnection heatingand T, =T,
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+ Quiescent plasmas provide benchmark for new measurement




Parallel heating shows a density dependence P

that perpendicular does not

lower density > higher density
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 Anisotropy persists for many collisional isotropization times, t ~ 0.1 ms
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Density dependence observed wherever T, is 6d
measured
core edge
1200: ' '
1000

800 |

EJ: 600}
- 400 A
200 _ high density
O b i

low density

T~

time (ms)

* Tpqr at the reversal surface shows similar behavior to T, in the core




Enhanced charge-exchange losses at high n

ST

may explain observation

« Assume heating mechanism actson T ICRH, stochastic heating)

perp (

'S

* T, should rise due to pitch-angle scattering in a few 1,,,’s,

par
... unless there is a competing loss mechanism

« The charge-exchange cross-section for C+6 and excited neutral
deuterium can be large (10-'3cm?),

T,=(Ny0, V) =100 us
Comparable to scattering time!

» Furthermore, neutral fraction increases with plasma density




Neutron detection




Neutron flux depends on ion density and

energy
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Neutron flux measurements do not agree with

ST

predictions using Maxwellian assumption
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- 3 differences between data and (2 temperature) Maxwellain model:
- data show low density neutron flux x10 higher than model
- data show neutron flux decreasing with density
 data show a longer decay constant




Large electric fields are induced during

reconnection

* Alarge parallel E-field is
measured during the event E, [V/m]

* In equilibrium, ion acceleration is
balanced by the electrons, but in
the presence of impurities or
trapped particles, there can be an

Time [ms]

frictional force on a test ion

. 100
imbalance. ; _
[ C+6 b
» Calculation based on e-i and i-i _ eok
collisions shows that E can £
overcome friction for test D (not w 4oL
true for C+6) '
20
0] I e —
0.1 1.0 10.0 100.0

VIV,



Final energy is quadratic in initial energy

+ The rich get richer! 10°F

 Neglecting friction, an
ion with v,=3v,, can reach
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Measured neutron flux is consistent with

suprathermal ion population
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NBI experiments show fast ions (E>7keV) are

well-confined ‘)
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Summary

- Several theoretical models for anomalous ion heating in the RFP exist. New
observational constraints are needed.

+ Parallel ion heating shows a strong density dependence that perpendicular does
not. This may (or may not) be one such constraint.

* Neutron flux measurements can not be explained by thermal fusion. They are
consistent with fusion from a small population of fast ions that do not exist in high
density plasmas.

« There is no indication that fast ions are contaminating the C*° temperature
measurement.
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Future work

* Increase the time resolution of the T, measurement to 100 kHz. This can be
accomplished by:

* Increasing the beam current of the diagnostic neutral beam (power supply
was upgraded Jan. ’10)

 Averaging spectral data before fitting to improve photon statistics

« Make off-axis toroidal measurements so that both T
reconstructed.

oerp @Nd T, profiles can be




The End




Neutron detector
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Low density plasmas show larger neutron flux P
than high

20 1own, (0.6e13cm™)
[ medium n, (0.9e13)
— L highn, (1.1e13)
w 1.5F )
) I
c
9 -
3 1.0f
e 5

time (ms)

- Because <ov>is a very steep function of energy, its possible
that lower T, inhibits neutron production in high density plasma
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Measured anisotropy is not large enough to

explain observation

» In calculation, high 20 IR ARRRESSS e _

density plasmas radiate
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Measured neutron flux is

consistent with

thermal fusion plus a fast ion component

* Model parameters: 257
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Calculating dd-fusion rate from anisotropic

distribution )

L o _ reaction rate (cm3/s)
-« Approximating a distribution with
Toarl¥) Ther @S two isotropic
Maxwellians (red) overestimates the

reaction rate,
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Previous result: heating is species dependent &
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 Impurities heated more strongly than bulk in deuterium plasma, but
temperatures agree well in helium plasma

- Difficult to distinguish between species dependent heating
mechanisms and species dependent loss mechanisms (e.g. charge
exchange)
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Spectrometer can measure T = 0.1-2.0 keV VST

 Instrumental broadening and the wavelength range of the
spectrometer limit the temperature measurement,
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Magnetics
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« Magnetic activity is similar
for two ensembles
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Ancillary
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Passive Temperature
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