
Parallelization in Time of Fully Developed Turbulence

Simulations - Application of a New Technique - the

"Parareal Algorithm"

Oak Ridge National Laboratory, December 10 2009

Debasmita Samaddar1, David E. Newman1, Raúl Sánchez2

1Physics Department, University of Alaska Fairbanks
2Fusion Energy Division, Oak Ridge National Laboratory

“Take Home Messa"”
•Simulation of fusion plasmas, and in particular,
dynamics of turbulent transport at long timescales is
computationally intensive.
•Need methods to speed up.

•Space parallelization - only known techniqe to
parallelize.
•Parareal algorithm parallelizes time domain - is an
innovative technique that may be applied for
parallelization to achieve computational speedup.

PARAREAL ALGORITHM: PARALLELIZES TIME
DOMAIN, AND WORKS FOR A TURBULENT
SYSTEM.

Outline

★ Motivation
★ Overview of algorithm

•Modification to algorithm
★ Application
★ Results & Conclusion

Motivation
•Simulations of fusion plasma is numerically very challenging -
e.g., studying long time evolution (hundreds or thousands of
eddy decorrelation times) of the transport dynamics is needed to
understand turbulent transport (in many plasmas and neutral
fluids).

•Space parallelization is not enough.

•Is time parallelization an option? Well, parareal algorithm has
been reported to have given significant speedup for simple
codes.

•Has not (yet) been applied to a turbulence code.

Overview of #

 Parareal Algo$%m ...

Parareal Algorithm : Distinct in many ways

•Algorithm first proposed by Lions et al. in 2001.
•Parallelizes in time, despite the sequential nature of
the time domain.
•Very non-intuitive as this is an initial value problem,
and the result of each time step should depend on
that of the previous timestep. However, in this case,
“timesteps” (chunks) are solved in parallel.
•Decomposition of space domain - hithereto been the
only approach to solve partial differential equations
using parallel processors.
•Uses predictor - corrector approach.

Actual

en
er

gy
 (t

)

Time
t0 t1 t2 t3 t4 t5 t6

F is a propagator evolving the function (energy(t)) from
initial time, t0, to a later time ...

Actual

en
er

gy
 (t

)

Time
t0 t1 t2 t3 t4 t5 t6

F is a propagator evolving the function (energy(t)) from
initial time, t0, to a later time ...

} } } } } }

P0 P4P3P2P1 P5

Actual
1st G

t0 t1 t2 t3 t4 t5 t6

en
er

gy
 (t

)

F is a propagator evolving the function (energy(t)) from
initial time, t0, to a later time ...
G - faster but inaccurate propagator

Time

} } } } } }

P0 P4P3P2P1 P5

Actual
1st G
1st F

t0 t1 t2 t3 t4 t5 t6

en
er

gy
 (t

)

F is a propagator evolving the function (energy(t)) from
initial time, t0, to a later time ...
G - faster but inaccurate propagator

Time

} } } } } }

P0 P4P3P2P1 P5

Actual
1st G
1st F
2nd G

t0 t1 t2 t3 t4 t5 t6

en
er

gy
 (t

)

F is a propagator evolving the function (energy(t)) from
initial time, t0, to a later time ...
G - faster but inaccurate propagator
Solvers G & F alternate

New G Old G

Time

} } } } } }

P0 P4P3P2P1 P5

Actual
1st G
1st F
2nd G
2nd F
3rd G
3rd F

t0 t1 t2 t3 t4 t5 t6

en
er

gy
 (t

)

F is a propagator evolving the function (energy(t)) from
initial time, t0, to a later time ...
G - faster but inaccurate propagator
Solvers G & F alternate

New G Old G

Time

} } } } } }

P0 P4P3P2P1 P5

i = 0 to (N-1)

. . .

Check Convergence

k = k + 1

i = 0 to (N-1)

k = 0 to (N-1),
Basic Algorithm

Metric for convergence:

A Modification to the Algorithm

In standard parareal algorithm, at the kth iteration,
the sequential solver, G is started from processor
Pk . However, if the algorithm is working
successfully, n processors have attained convergence
at the kth iteration, where n > k. We have used
this characteristic to improve the algorithm.

We replaced Pk by Pn as the starting point for G
and all subsequent calculations at iteration k. This
change led to a quicker convergence of the entire
time series.

Actual
1st G
1st F
2nd G
2nd F
3rd G
3rd F

t0 t1 t2 t3 t4 t5 t6

en
er

gy
 (t

)

F is a propagator evolving the function (energy(t)) from
initial time, t0, to a later time ...
G - faster but inaccurate propagator
Solvers G & F alternate

New G Old G

Time

} } } } } }

P0 P4P3P2P1 P5

Success of Algorithm Depends on
Multiple Factors

•k<<N.
G is much cheaper than F.

•Despite solutions being very sensitive to initial conditions for
turbulent or chaotic systems - it is possible to choose G.

•“Good” G: Solutions converge •“Bad” G: Solutions diverge

•No “fixed recipe” for G !

 Algorithm always converges if k=N.
But, success in achieving significant speedup if

A&lication of #

 Parareal Algo$%m ...

Parareal Algorithm has been successfully
applied to the Lorenz System

ρ = 28
σ = 10

β = 8/3

Ref: M.J. Gander & E. Hairer(2008)

In Region explored, varying Chunk-Size
does not affect k, required for

Convergence

Estimation for time gain:
If convergence in k=10 with 180 processors & time for
G is neglected,
timeserial = 18 * timeparareal Ref: M.J. Gander & E. Hairer(2008)

Normalized error decreases with increasing
Iterations

As the solutions converge towards the serial solution, the
normalized error reduces below prescribed tolerance.

Moving from # “simple” Lorenz sy'em

to a much more complex Turbulent

sy'em ...

Two-nonlinearity Model for DTEM

•Evolution solved by spectral code in kx, ky space, often of
size 385 x 385:

• to which sources Tk (in k space) and sinks Sk may be added
•an external shear at (kx=0,ky=±1) may be added to explore its
effects on turbulence transport.

Moving from the “simple” Lorenz system to a
much more complex Turbulent system ...

•296450 non-linearly coupled equations (the Lorenz system had 3
such equations) ... hence, the turbulent system is much more
complex
•Has positive Lyapunov exponent

Power Spectrum in k space

Vorticity in a turbulent system

Selecting Optimum Coarse Solver is
Important

•Some of the physics may be ignored when solving
with G, to achieve speedup.
•G can be same as F, but may be solved over a
coarser k-mesh (or spatial grid).
•G may be same as F, but may be solved with a
larger timestep (dt) and less accuracy.
•Use a different G.

Different approaches can/should be explored to find G.
Any one of them, or a combination of them, may work :

Reducing the Grid Size in K-space
speeds G.

only the core portion of the grid used in F was used in G.
But, core should be big enough to include dissipation scales.

Grid for F
Grid for G

Since most energy is concentrated at core,

Kx
K

y

Also, reduced grid allows larger dt for simulations.

Convergence is found with reduced
k-space & larger dt in G

The error falls off with iterations.

Convergence at 34 iterations for 80
processors.

Total energy of the system is used for convergence measurement.

Mo(fication to #

 Algo$%m ...

Modification to the Algorithm significantly
reduces the Number of Iterations needed for

Convergence

For a fixed chunk size=160, convergence occurs at 22
iterations for 160 processors with the modification to
the scheme. With the unmodified version, for the same
chunk size with 80 processors, 53 iterations were
required for convergence!

A)eoretical Analys* of

 Efficiency ...

The Scaling varies with the Chunk Size per
Processor as well as the total Simulation Time
Strong Scaling:

•Total simulation time (ntstep) constant.

•Number of processors varied.

• So, the chunk size decreases linearly with increasing number
of processors.

•Ideally, TPA = 1/N.

Weak Scaling:

•Chunk size constant.

•Number of processors varied.

•So, the total simulation time (ntstep) increases linearly with
the processors.

•Ideally, TPA = constant .

Strong Scaling : Model predicts Two Regimes with
Number of Processors exist for the Gain due to

Parallelization
The gain, HPA may be defined as :

where &

So

Hence, the number of processors giving maximum gain:

Hence, the two regimes are:

HPA depends on β&α

For a fixed β, HPA decreases with increasing α.

For a fixed α, HPA increases linearly with β.

Replacing old Solver in G with Runge-Kutta
increases β

G solver Time (mins) Beta
RK2,dt_G=2dt_F 14.56 106.81

RK2,dt_G=8dt_F 3.625 429

RK2,dt_G=16dt_F 1.82 854.5

RK2,dt_G=32dt_F UNSTABLE (NANs)

RK4,dt_G=2dt_F 29.2 53.26

RK4,dt_G=8dt_F 7.25 214.51

RK4,dt_G=16dt_F 3.651 426

RK4,dt_G=32dt_F 1.82 854.5

RK4,dt_G=40dt_F 1.46 1065.2

RK4,dt_G=64dt_F 0.91 1709

RK4,dt_G=80dt_F UNSTABLE (NANs)

Time for typical F runs for
NTSTEP=25600:25.92hrs=1555.2mins
Timings for serial runs in G using Runge Kutta with kmax=72 (for
NTSTEP=25600):

Balancing β& k(N) maximizes H
cases with kmax_pr=72 Iterations to converge Time for convergence(hr)

VODPK in G 11 2.88

RK order4,dt_pr=2dt_ser 11 2.04

RK order4,dt_pr=4dt_ser 11 1.76

RK order4,dt_pr=8dt_ser 10 1.355

RK order4,dt_pr=16dt_ser 11 1.43

RK order4,dt_pr=40dt_ser 11 1.326

RK order2,dt_pr=2dt_ser 10 1.58

RK order2,dt_pr=4dt_ser 10 1.375

RK order2,dt_pr=8dt_ser 10 1.245

RK order2,dt_pr=16dt_ser 12 1.47

Strong Scaling : Using Runge-Kutta solver in G
greatly enhances the gain, H

A gain of 10.69 is achieved with 400 processors.

Weak Scaling : Using Runge-Kutta solver in G
greatly enhances the gain, H

A gain of 8.805 is achieved with 88 processors.

Conclusions

•Parallelization in time - possible for a turbulent system and
Parareal Algorithm works for such a case.

•For a successful application of the parareal algorithm to a
turbulence code, a proper choice of the coarse solver,G, is critical.

•G with a reduction of grid size & increase in time step, compared to
F, and a Runge Kutta solver in G replacing the vodpk (gear type
solver) in F, appears to work best for our case.

•A successful implementation of the parareal algorithm may greatly
enhance computational efficiency, and larger scalability with respect
to processor numbers.

•Hence, the study of the dynamics of turbulent transport at
transport timescales and other relevant problems in fusion plasma
may be made possible.

Future Work

Further improvement will be persued by:

•new strategies to improve G (L.Chacon, ORNL),
•hybrid parallelization (space + time),
•reuse of processors already having attained convergence,
•portable parareal framework (L.Berry, W. Elwasif, ORNL).

Acknowled"ments:
 D. E. Newman & R. Sánchez - without their tireless

help and input - this project was/is impossible.

 Consultants & Staff at ARSC (Arctic Region
Supercomputing Center) for their incredible patience,
help & enthusiasm.

 ARSC for computer time.

References
•Y. Liang et al, Phys. Fluids B 5, 1128 (1993)

•D. E. Newman et al, Phys. Fluids B 5, 1140 (1993)

•J.A. Mier et al, Physical Review Letters (accepted, 2008)

•J.L. Lions et al, C.R. Acad. Sci. Paris, Serie I, 332 (2001), pp.
661668

•L. Baffico et al, Phys. Rev. E 66, 057701 (2002)

•M. Gander & S. Vandewalle, SIAM J. on Sc. Comp. 29(2) (2007)

•Y. Maday & G. Turinici, Proceedings of the 15th International
Conference on Domain Decomposition Methods, Berlin, July 21-25,
2003

•P. F. Fischer et al, A Parareal in Time Semi-implicit
Approximation of the Navier-Stokes Equations

•M.J. Gander & E. Hairer, Nonlinear Convergence Analysis for the
Parareal Algorithm (Domain Decomposition Methods in Science and
Engineering XVII)

)ank y,

