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•Within this framework, the goal of transport modeling is to find V and D based

on theory, numerics and experimental evidence.

•According to the standard diffusive paradigm

Diffusive transport

•Consider the transport of a single scalar field in  one dimension
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•This approach has been quite useful and valuable for the understanding 

of transport in fusion plasmas. 
However……



•Over the last few years we have explored the use of alternative non-local

transport models of the form

•The “V-D” paradigm is a local description that assumes a well-defined transport

scale and that widely separated regions do not interact.

Non-diffusive transport

•There is evidence that indicates that this assumption might be too restrictive.

Some examples include:

•Non-diffusive scaling, and non-Gaussian statistics

•Fast propagation phenomena, and non-local transport

•Up-hill transport, density peaking, pinch effects, ……

! 

q(x) = "# $x K(x" y)% T (y) dy

•In the models considered here, the selection of the function  K(x-y) is based on

the theory of non-Gaussian stochastic processes.



Example 1: passive tracers in fluids
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Example 2: passive tracers in plasma turbulence
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“Microscopic” description  of diffusion equation:

 the Brownian random walk

= jump!
n
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Revisiting the foundation of the  diffusion equation:

 the Continuous Time Random Walk

= jump!
n

!
n

!
n

!
n

= waiting time ! "( ) = waiting time pdf

! "( ) = jump size pdf

(Montroll-Weiss 1965)

Montroll-Weiss aster equation
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Long-time, large-scale asymptotic limit of the Montroll-Weiss equation
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Fluid limit of the CTRW:

Derivation of fractional diffusion equation
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Fractional diffusion equation
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•The fractional diffusion equation corresponds to the continuum, fluid limit of

a generalized, non-Brownian random walk.

Fractional diffusion model

•Fractional diffusion assumes a non-local flux-gradient relation of the form
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$"1[ ] ˆ T (k)•In Fourier space:

•The scaling              motivates the term fractional diffusion
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"#1
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•The model can also incorporate time non-locality, i.e., non-Markovian 

(memory) effects

•The fractional diffusion model exhibits anomalous self-similar scaling

•Also, the Green’s function of the model are the Levy !-stable distributions



Application I:

Non-diffusive transport in a periodic vortex chain

Model
Comparison with asymmetric neutral

fractional diffusion equation

! 

" = #=0.9

! 

" =1

(strongly asymmetric regime)



Applications II: Transport in plasma turbulence
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Comparison between fractional model and turbulent

transport  data
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Effective transport operators for turbulent transport
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Applications III:

Anomalous confinement time scaling
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Applications IV: Profile peaking
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Applications IV: Pinch effects and up-hill transport
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Applications V: Perturbative transport experiments
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•Perturbative transport experiments follow the transient response of the 

plasma to externally applied small perturbations

Cold Pulses Power modulation

•These experiments provide valuable time dependent

information useful for validating and testing models

•Due to the different times scales involved in the response, conducting these

two types of experiments for the same plasma is particularly valuable.

•Our goal is to use these experiments to determine if non-locality is necessary



Cold pulse propagation:

experimental results
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•Several observations at JET, and other

Machines, indicate that cold pulses from
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Power modulation:

experimental results

“Heat wave”

Modulated

source

Equilibrium

">0.3: waves and pulses propagate fast

"<0.3 heat wave slows down and is damped 

BUT cold pulse still travels fast! 

This asymmetry seems incompatible with local 

transport models
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Modeling attempts

•Pulse delay in local models: Weiland model ~50 ms.

 Critical gradient model ~23 ms.

•TRB:Predicts a very fast cold pulse and a very fast propagation of modulation

heat wave.

•Non-locality seems to be the key missing ingredient

•Local models show symmetric behavior of modulation and cold pulses, and are

not able to reproduce the JET results.

•They seem to fit modulation data well but underestimate the experimentally

observed pulse velocity: ~4 ms delay to the core

•CUTIE: Cold pulse does not propagates to the center. Not possible to simulate

modulation due to long time scales involved.

 Turbulence spreading models do a better job, ~18 ms

•The challenge is to construct a model capable of describing both types of

perturbations.



Fractional diffusion model of heat transport
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black:1st harmonic

red: 3rd harmonic

dots: experiment

solid line: fractional model

Mode amplitude Mode phase
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Cold Pulse: comparison model with experiment

•Consistent with the experiment, the fractional model gives a delay of the order of

4ms for cold pulses Model
Experiment

! 
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= 0.03keV

dCN et al. Nucl. Fusion 48 05009 (2008)



In the standard diffusion

model the flux is a single

valued function,

proportional  to the

gradient.

Multi-valued flux-

gradient relations related

to non-locality

During power

modulation transport
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Flux-gradient time traces during power modulation



During pulse propagation

non-locality manifests 

clearly

Introduction of pulse
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Flux-gradient time traces during pulse propagation
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Power modulation
Weak dependence on non-locality parameter !

(symmetric case $=0, %s =1 )
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NON-LOCAL FLUX-GRADIENT RELATIONS IN LHD
(T. Naoki and S. Inagaki

Preliminary results, personal comunication)



Steady state with ITB
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Pulse propagation with ITB: diffusive case
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Non-local “tunneling” of perturbation across ITB
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Heating response from cold pulse across ITB

x

t

x

t

ITB

! 

" Flux

! 

" Temperature

! 

x = 0

! 

x = 0.15

! 

x = 0.40

! 

x = 0.50

! 

x = 0.60

! 

x = 0.75
edge

core

ITB

location

HEATING

response

Black=

diffusive

with ITB

Blue=

#=1.25 non-local

without ITB

Red=

#=1.25 non-local

with ITB

time

! 

" Temperature

#=1.25 non-local

with ITB

8



ITB

Non-local

Non-local

Heat wave amplitude: Low frequency

NO ITB

For low frequencies there is a  difference between diffusive

and non-local heat wave propagation
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Heat wave amplitude: High frequency

For high frequencies there is a not clear difference between diffusive

and non-local heat wave propagation
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