
Development of an Arbitrary Curvilinear-Coordinate PIC code

Development of an Arbitrary

Curvilinear-Coordinate PIC code

Chris Fichtl

The University of New Mexico
Dept. of Chemical and Nuclear Engineering

Los Alamos National Laboratory
T-5, Applied Math and Plasma Physics Group

November 9, 2009



Development of an Arbitrary Curvilinear-Coordinate PIC code

Outline

1 Introduction

2 PDE-Based Grid Generation

3 Curvilinear Coordinate Poisson Solver

4 Weighting and Interpolation

5 Logical Grid Particle Mover

6 Validation

7 Future Work/Conclusions



Development of an Arbitrary Curvilinear-Coordinate PIC code

Introduction

1 Introduction

2 PDE-Based Grid Generation

3 Curvilinear Coordinate Poisson Solver

4 Weighting and Interpolation

5 Logical Grid Particle Mover

6 Validation

7 Future Work/Conclusions



Development of an Arbitrary Curvilinear-Coordinate PIC code

Introduction

Introduction

Conventional PIC codes rely on uniform
grid cells (polar,spherical)

Specific coordinate system

Multiple grid resolutions often required
within domain

Fine resolution near dust grains
Less resolution near outer boundary of
domain
PIC processes become very complex on
nonuniform domain
(weighting/interpolation/location)

Why not map physical grid onto a uniform,
unitary logical grid and run PIC there?

Figure: Stair-stepping
along curved boundary
[Miloch,et al., Phys.
Rev. E 2008]



Development of an Arbitrary Curvilinear-Coordinate PIC code

PDE-Based Grid Generation

1 Introduction

2 PDE-Based Grid Generation

3 Curvilinear Coordinate Poisson Solver

4 Weighting and Interpolation

5 Logical Grid Particle Mover

6 Validation

7 Future Work/Conclusions



Development of an Arbitrary Curvilinear-Coordinate PIC code

PDE-Based Grid Generation

Differential Geometry Review

Jacobian and its inverse:

j ij =

(

∂x i

∂ξj

)

, κi
j =

(

∂ξi

∂x j

)

i , j = 1, · · · , n

Metric tensors:

gij = jT j =
∂xk

∂ξi

∂xk

∂ξj
, g ij = κκT =

∂ξi

∂xk

∂ξj

∂xk
i , j , k = 1, · · · , n

Can easily convert between covariant and contravariant in 2d:

g ij = (−1)i+j g3−i ,3−j

g

gij = (−1)i+j
gg3−i ,3−j



Development of an Arbitrary Curvilinear-Coordinate PIC code

PDE-Based Grid Generation

Mapping

y

x

η

ξ

1

2

3

4

1
2

3

4

Map should be:

Smooth (at least continuous and differentiable)
Orthogonal (preferable but not necessary)
Well-adapted to the physical system



Development of an Arbitrary Curvilinear-Coordinate PIC code

PDE-Based Grid Generation

Elliptic Grid Generation

Techniques using systems of PDEs to derive coordinate
transforms are very popular for structured grid generation

Elliptic, parabolic, hyperbolic, etc.

Advantages:

Extremum principle
Smoothness of solution
“one-to-one” mapping

Disadvantages:

System of PDEs must be solved numerically (nonlinear solver)
Boundary conditions must be chosen carefully to ensure
orthogonality



Development of an Arbitrary Curvilinear-Coordinate PIC code

PDE-Based Grid Generation

Winslow’s Method [JCP 1967 ]

Uncoupled Laplace’s equation

∇2
xξ

i =
∂

∂x j

∂ξi

∂x j
= 0

Transform to logical grid

g ik(x)
∂2xp

∂ξi∂ξk
= 0

Invert metric tensor:

g22xξξ − 2g12xξη + g11xηη = 0
g22yξξ − 2g12yξξ + g11yηη = 0

System of two nonlinear coupled equations—solved with a
Newton-Krylov solver



Development of an Arbitrary Curvilinear-Coordinate PIC code

PDE-Based Grid Generation

Example Grids

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(c)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(d)



Development of an Arbitrary Curvilinear-Coordinate PIC code

PDE-Based Grid Generation

Example Grids

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

(e)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

(f)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

(g)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

(h)



Development of an Arbitrary Curvilinear-Coordinate PIC code

PDE-Based Grid Generation

Example Grids

−5 −4 −3 −2 −1 0 1 2 3 4 5

−1

0

1

2

3

4

5

6

x

y

(i)

−5 −4 −3 −2 −1 0 1 2 3 4 5

−1

0

1

2

3

4

5

6

x
y

(j)



Development of an Arbitrary Curvilinear-Coordinate PIC code

Curvilinear Coordinate Poisson Solver

1 Introduction

2 PDE-Based Grid Generation

3 Curvilinear Coordinate Poisson Solver

4 Weighting and Interpolation

5 Logical Grid Particle Mover

6 Validation

7 Future Work/Conclusions



Development of an Arbitrary Curvilinear-Coordinate PIC code

Curvilinear Coordinate Poisson Solver

Logical Space Poisson Equation

Transform ∇2
xΦ = −ρ to logical grid

∂

∂ξm

(

f Jg im ∂Φ

∂ξi

)

= −f Jρphys = −f ρlog

f = (1, r) is a “geometry factor”

Azimuthal or axial symmetry

Variational principle approach to discretization of Poisson
equation

Symmetric and positive-definite
Solved using unpreconditioned CG

Physical potential is now mapped onto the logical grid



Development of an Arbitrary Curvilinear-Coordinate PIC code

Curvilinear Coordinate Poisson Solver

Method of Manufactured Solutions

Pick a potential which satisfies chosen B.C.’s

Φ (r , θ) = 1 − r3 + (r − r1) (r2 − r) cos (θ)

Analytically calculate ρ using Poisson’s eqn, insert into solver

Cylindrical:

ρ (rc , θ) = −9rc +

(

−3 +
r1r2

r2
c

)

cos (θ)

Spherical:

ρ (rs , θ) = −12r +

(

−4 +
2r1r2

r2
s

)

cos (θ)

Compare numerical and exact solns via L2-norm

2nd order accuracy observed for all cases



Development of an Arbitrary Curvilinear-Coordinate PIC code

Curvilinear Coordinate Poisson Solver

Method of Manufactured Solutions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

 

 

0

0.2

0.4

0.6

0.8

1

(k) Physical Grid

0
10

20
30

40
50

60
70

0

20

40

60

80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ηξ
φ

(l) Logical Grid

Figure: MMS Potential



Development of an Arbitrary Curvilinear-Coordinate PIC code

Weighting and Interpolation

1 Introduction

2 PDE-Based Grid Generation

3 Curvilinear Coordinate Poisson Solver

4 Weighting and Interpolation

5 Logical Grid Particle Mover

6 Validation

7 Future Work/Conclusions



Development of an Arbitrary Curvilinear-Coordinate PIC code

Weighting and Interpolation

Logical Grid Weighting/Interpolation

Particle shape is uniform and symmetric on logical grid

Require adjoint operations

Weighting: qp → ρg ρg =
∑

p Sgpqp

Interpolation: Eg → Ep Ep =
∑

g SpgEg

Non-adjoint operators results in loss of momentum
conservation, grid heating [Birdsall and Langdon, Adam Hilger

1991 ]

Implemented schemes

Bilinear
4 node stencil
Alog = dξdη

2nd order accurate

Biquadratic
9 node stencil
Alog = 4dξdη

2nd order accurate



Development of an Arbitrary Curvilinear-Coordinate PIC code

Logical Grid Particle Mover

1 Introduction

2 PDE-Based Grid Generation

3 Curvilinear Coordinate Poisson Solver

4 Weighting and Interpolation

5 Logical Grid Particle Mover

6 Validation

7 Future Work/Conclusions



Development of an Arbitrary Curvilinear-Coordinate PIC code

Logical Grid Particle Mover

Considerations

On physical grid, particles obey Newton-Lorentz force
equations:

m
dv

dt
= F = qE

dx

dt
= v

No existing standard for PIC with nonuniform gridding

Require iterative cell-search algorithm for physical space mover



Development of an Arbitrary Curvilinear-Coordinate PIC code

Logical Grid Particle Mover

Transformed NL Equations

Transform NL force equations to logical grid:

dξi

dt
= vj

∂ξi

∂xj
≡ ui

dui

dt
= ∂ξi

∂xj

dvj

dt
+ vj

d
dt

(

∂ξi

∂xj

)

Ficticious forces term: vj
d
dt

(

∂ξi

∂xj

)

Analagous to centrifugal/Coriolis forces



Development of an Arbitrary Curvilinear-Coordinate PIC code

Logical Grid Particle Mover

BUT...

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
position

-1

0

1

ve
lo

ci
ty

0.24 0.25 0.26
-0.1

0

0.1

vξ
v

x

(a) Phase space

0 50 100 150 200
ω

pe
t

-1

0

1

v

100 101 102 103 104 105
-2

-1

0

1

2

vξ
v

x

(b) Velocity vs time

Single particle in harmonic oscillator potential well: Φ = A
`

x2 + y2
´

1d nonuniform grid: x = ξ + ǫξ2

1+ǫ

Lose energy/momentum conservation

Transformed NL force equations do not conserve phase-space area!



Development of an Arbitrary Curvilinear-Coordinate PIC code

Logical Grid Particle Mover

Hamiltonian Based Approach

Apply contact transformation using an F2(x ,P , t) generating
function:

pi =
∂F2

∂xi

ξi =
∂F2

∂Pi

K (ξ,P) = H (x(ξ,P),p(ξ,P)) +
∂F2

∂t
.

Assuming a time-independent grid, we obtain the logical grid
Hamiltonian:

K =
1

2m

(

g jkPjPk

)

+ Ṽ (ξ) = T (ξ,P) + V (ξ)



Development of an Arbitrary Curvilinear-Coordinate PIC code

Logical Grid Particle Mover

Equations of Motion

Apply Hamilton’s equations:

ξ̇i =
∂K

∂Pi
, Ṗi = −

∂K

∂ξi

Resulting equations of motion:

ξ̇ = 1
m

(

g11Pξ + g12Pη

)

η̇ = 1
m

(

g12Pξ + g22Pη

)

Ṗξ = − 1
2m

(

P2
ξ

∂g11

∂ξ
+ 2PξPη

∂g12

∂ξ
+ P2

η
∂g22

∂ξ

)

− ∂Ṽ (ξ)
∂ξ

Ṗη = − 1
2m

(

P2
ξ

∂g11

∂η
+ 2PξPη

∂g12

∂η
+ P2

η
∂g22

∂η

)

−
∂Ṽη(ξ)

η

Field/grid quantities must be interpolated to particle position!



Development of an Arbitrary Curvilinear-Coordinate PIC code

Logical Grid Particle Mover

Integration of Equations of Motion

Recall:

K =
1

2m

(

g jkPjPk

)

+ Ṽ (ξ) = T (ξ,P) + V (ξ)

Non-separable equations → cannot use “naive” leapfrog
integration method!

Hamiltonian formulation ensures equations of motion are
divergence free

Semi-Implicit Modified Leapfrog (ML) integrator [Finn and

Chacón, PoP 2005 ]
Fully Implicit Crank-Nicolson [Finn and del-Castillo-Negrete,

Chaos 2001 ]



Development of an Arbitrary Curvilinear-Coordinate PIC code

Logical Grid Particle Mover

Modified Leapfrog Integrator

Rewrite equations of motion:
Ṗ = Υ(ξ,P, t) and ξ̇ = Λ(ξ,P, t)

ML can be written Mh = Pe
h ◦ ξi

h where

ξi
h :

{

ξ1 = ξ + hΛ(ξ1,P, t)
P1 = P

, Pe
h :

{

ξ′ = ξ1

P′ = P1 + hΥ(ξ1,P1, t)

Combining,

ξ′ = ξ + hΛ(ξ′,P, t), P′ = P + hΥ(ξ′,P, t).

Symmetrized ML → ξe
h/2 ◦ Pi

h/2 ◦ Pe
h/2 ◦ ξi

h/2

Semi-implicit → Newton/Picard iterations required for ξi ,Pi

Symplectic for 4 degrees of freedom



Development of an Arbitrary Curvilinear-Coordinate PIC code

Logical Grid Particle Mover

Crank-Nicolson Integrator

CN integrator can be written as:

ξ′ = ξ + hΛ(ξ+ξ′

2 , P+P′

2 , t + h
2 )

P′ = P + hΥ(ξ+ξ′

2 , P+P′

2 , t + h
2 )

Fully implicit → Newton/Picard iterations required

Symplectic for Hamiltonian systems of arbitrary dimensions
Explicit PIC → ML and CN on equal footing



Development of an Arbitrary Curvilinear-Coordinate PIC code

Validation

1 Introduction

2 PDE-Based Grid Generation

3 Curvilinear Coordinate Poisson Solver

4 Weighting and Interpolation

5 Logical Grid Particle Mover

6 Validation

7 Future Work/Conclusions



Development of an Arbitrary Curvilinear-Coordinate PIC code

Validation

Test Grids

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(c)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(d)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(e)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(f)



Development of an Arbitrary Curvilinear-Coordinate PIC code

Validation

Initial Conditions

Uniform (immobile) ion background

64 x 64 grid

dt = 0.1 (normalized to ωpe)

64 ppc on uniform grid (262144 total particles)

Nonuniform, orthogonal, symmetric grid, ǫ = 0.075



Development of an Arbitrary Curvilinear-Coordinate PIC code

Validation

Straight Line Orbits

0 500 1000 1500
time

5.1

5.11

5.12

5.13

5.14

5.15

K

Uniform
Nonuniform, ε = 0.025
Nonuniform, ε = 0.075
Nonorthogonal, ε = 0.015
Nonorthogonal, ε = 0.075

x 10
-3

(g)

0 20 40
time

5.1242

5.1244

5.1246

5.1248

5.125

5.1252

K

Uniform
Nonuniform, ε = 0.025
Nonuniform, ε = 0.075
Nonorthogonal, ε = 0.015
Nonorthogonal, ε = 0.075

x 10
-3

(h)



Development of an Arbitrary Curvilinear-Coordinate PIC code

Validation

Harmonic Oscillator Potential Well

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(i) Nonuniform, ǫ = 0.075

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ

η

(j) Logical Mapping

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(k) Nonorth, ǫ = 0.035

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ

η

(l) Logical Mapping



Development of an Arbitrary Curvilinear-Coordinate PIC code

Validation

Cold Plasma Oscillations

0 5 10 15 20 25
ω

pe
t

1e-12

1e-09

<
E

2 >

Uniform Grid
Non-uniform Grid



Development of an Arbitrary Curvilinear-Coordinate PIC code

Validation

Two-stream Instability

0 10 20 30
ω

pe
t

1e-09

1e-06

0.001

<
E

2 >

Uniform Grid
Non-Uniform Grid

(m)

0 0.5 1 1.5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

kv
0
/ω

pe

ω
/ω

p
e

 

 
Im(ω)
Re(ω)
PIC data

(n)



Development of an Arbitrary Curvilinear-Coordinate PIC code

Validation

Two-stream Instability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x

v x

(o) ωpet = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x

v x

(p) ωpe t = 22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x

v x

(q) ωpe t = 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x

v x

(r) ωpe t = 28



Development of an Arbitrary Curvilinear-Coordinate PIC code

Validation

Langmuir Waves

ω2 = ω2
pe + 3k2v2

t,e

0 5 10 15 20 25
ω

pe
t

1e-08

1e-06

0.0001

0.01

<
E

2 >

v
th

 = 0.0

v
th

 = 0.01

v
th

 = 0.025

vth ωPIC ωtheory % error

0.0 1.00081 1.00000 0.081

0.005 1.00081 1.00148 0.067

0.01 1.00644 1.00590 0.053

0.015 1.01660 1.01324 0.332

0.02 1.02601 1.02341 0.254

0.025 1.02887 1.03635 0.722



Development of an Arbitrary Curvilinear-Coordinate PIC code

Validation

Landau Damping

128 x 128 grid, 225ppc (3686400 total particles)

ωi = −

√

π

8

ωpe

|k3λ3
De |

exp

[

−

(

1

2k2λ2
De

+
3

2

)]

0 2 4 6 8 10
ω

pe
t

1e-06

0.001

<
E

2 >

Uniform Grid
ε

grid
 = 0.025

ε
grid

 = 0.05

ε
grid

 = 0.075

vth γPIC γtheory % error

0.06 -0.0732 -0.0774 5.426

0.08 -0.1453 -0.1521 4.471

0.10 -0.1504 -0.1589 5.349

0.12 -0.1311 -0.1354 3.176



Development of an Arbitrary Curvilinear-Coordinate PIC code

Future Work/Conclusions

1 Introduction

2 PDE-Based Grid Generation

3 Curvilinear Coordinate Poisson Solver

4 Weighting and Interpolation

5 Logical Grid Particle Mover

6 Validation

7 Future Work/Conclusions



Development of an Arbitrary Curvilinear-Coordinate PIC code

Future Work/Conclusions

Future Work

Finish incorporation of nonorthogonal grids into full PIC code

OML charging of dust grain in uniform plasma - Validation of
full PIC

Particle emission from surface of grain → Potential well???

2 dust particles case → Attractive force?



Development of an Arbitrary Curvilinear-Coordinate PIC code

Future Work/Conclusions

Conclusions

Winslow’s method for boundary conforming initial grid

Curvilinear coordinate Poisson solver

Hamiltonian-based, symplectic logical grid particle
mover/integrator

Code validation examples



Development of an Arbitrary Curvilinear-Coordinate PIC code

Future Work/Conclusions

Questions?



Development of an Arbitrary Curvilinear-Coordinate PIC code

Future Work/Conclusions



Development of an Arbitrary Curvilinear-Coordinate PIC code

Future Work/Conclusions

Transformed NL Equations

Transform NL force equations to logical grid:

u′ = (1 − hM11) u − hM12v − qh
m

(

g 11Φξ + g 12Φη

)

v ′ = −hM21u + (1 − hM22) v − qh
m

(

g 12Φξ + g 22Φη

)

and

ξ′ = ξ + u′h

η′ = η + v ′h

where we have defined u = ξ̇, v = η̇, and

M11 = 1
J

[u (j22xξξ − j12yξξ) + v (j22xξη − j12yξη)]

M12 = 1
J

[u (j22xξη − j12yξη) + v (j22xηη − j12yηη)]

M21 = 1
J

[u (−j21xξξ + j11yξξ) + v (−j21xξη + j11yξη)]

M22 = 1
J

[u (−j21xξη + j11yξη) + v (−j21xηη + j11yηη)]


	Outline
	Introduction
	PDE-Based Grid Generation
	Curvilinear Coordinate Poisson Solver
	Weighting and Interpolation
	Logical Grid Particle Mover
	Validation
	Future Work/Conclusions

