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Introduction

@ Conventional PIC codes rely on uniform
grid cells (polar,spherical)

@ Specific coordinate system
o Multiple grid resolutions often required
within domain

@ Fine resolution near dust grains
@ Less resolution near outer boundary of 22272V L

. A e e =
domain A AL

o PIC processes become very complex on il .
nonuniform domain e R

(weighting /interpolation/location)

Figure: Stair-stepping
along curved boundary
[Miloch,et al., Phys.
Rev. E 2008]

Why not map physical grid onto a uniform,
unitary logical grid and run PIC there?
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Differential Geometry Review

@ Jacobian and its inverse:

L (X .o .
JJ: 85" ) K‘_j: 8XJ Iv./:]-v"'vn

@ Metric tensors:

8i=J = per g 8 Oxk DXk

i)j)k:]-v"' , N

@ Can easily convert between covariant and contravariant in 2d:
_1)i+j 83-i,3—j
g

gj = (—1)" gg*3

gl =(
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Mapping

[ 1.

@ Map should be:

@ Smooth (at least continuous and differentiable)
@ Orthogonal (preferable but not necessary)
@ Well-adapted to the physical system
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Elliptic Grid Generation

@ Techniques using systems of PDEs to derive coordinate
transforms are very popular for structured grid generation

o Elliptic, parabolic, hyperbolic, etc.
@ Advantages:

o Extremum principle
@ Smoothness of solution
o ‘“one-to-one” mapping

@ Disadvantages:

@ System of PDEs must be solved numerically (nonlinear solver)
o Boundary conditions must be chosen carefully to ensure
orthogonality
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Winslow's Method [JCP 1967]

@ Uncoupled Laplace's equation

i o o0&
2¢i _ ¥ —
Vi = OxJ OxI
@ Transform to logical grid
0?xP

ik
X)) =
g ( )8§,a€k
@ Invert metric tensor:
822Xee — 2812Xeny + 811Xy = 0
82Yee — 2812Yee + 11y = O

System of two nonlinear coupled equations—solved with a
Newton-Krylov solver
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Example Grids
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Logical Space Poisson Equation

@ Transform V2® = —p to logical grid

0 m0®\ L
86’” <fJ 86 > - prphys - fplog

o f=(1,r)is a “"geometry factor”
@ Azimuthal or axial symmetry

@ Variational principle approach to discretization of Poisson
equation
@ Symmetric and positive-definite
@ Solved using unpreconditioned CG

Physical potential is now mapped onto the logical grid
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Method of Manufactured Solutions

@ Pick a potential which satisfies chosen B.C.'s
®(r,0)=1—r>+(r—n)(ra—r)cos(6)

@ Analytically calculate p using Poisson's eqn, insert into solver
@ Cylindrical:

p(re,0) = —9r. + <—3 + r1r2) cos ()

2
re

@ Spherical:

2
p(rs,0) = —12r + <—4—|— :1;2) cos (6)

@ Compare numerical and exact solns via Ly-norm
o 27 order accuracy observed for all cases
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Method of Manufactured Solutions

(k) Physical Grid (1) Logical Grid

Figure: MMS Potential
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Logical Grid Weighting/Interpolation

@ Particle shape is uniform and symmetric on logical grid
@ Require adjoint operations
@ Weighting: g, — pg Pg = >, Seplp
o Interpolation: E; — E, E, = SpgEg
o Non-adjoint operators results in loss of momentum
conservation, grid heating [Birdsall and Langdon, Adam Hilger
1991]

@ Implemented schemes

o Bilinear
@ 4 node stencil
9 A = d€dn

o 2" order accurate
@ Biquadratic

@ 9 node stencil

8 Alpg = 4d&dn

@ 2" order accurate
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Considerations

@ On physical grid, particles obey Newton-Lorentz force

equations:
dv
— = F=gE
mat 9
dx v
de

@ No existing standard for PIC with nonuniform gridding

@ Require iterative cell-search algorithm for physical space mover



Development of an Arbitrary Curvilinear-Coordinate PIC code
Logical Grid Particle Mover

Transformed NL Equations

@ Transform NL force equations to logical grid:

a0 =
dt Vg = Ui
du; 9¢i va .d (0%
d T Ox dt + Vi de 0x;
d (9%
@ Ficticious forces term: v; (axj)

o Analagous to centrifugal/Coriolis forces
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BUT...

o

I I I
1 0 50 100 150
o

(a) Phase space (b) Velocity vs time

M\

@ Single particle in harmonic oscillator potential well: ® = A (x* + y?)

@ 1d nonuniform grid: x = £ + £ T

@ Lose energy/momentum conservation

Transformed NL force equations do not conserve phase-space area
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Hamiltonian Based Approach

@ Apply contact transformation using an Fp(x, P, t) generating

function:
o oF>
pi = O
oF
§ = 0P;

K(EP) = H((EP)p(EP) + 02

@ Assuming a time-independent grid, we obtain the logical grid
Hamiltonian:

K= % (&#PiPy) + V(&) = T(6.P) + V(&)
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Equations of Motion

@ Apply Hamilton's equations:

. 0K . oK
i = a5 Pi=—
= ap, 9,

@ Resulting equations of motion:

§ = L(g"Pe+g?P,)

1= (8PP +8%Py)

. . 1 ) 11 912 29 22 8\7(5)
Pe =~ (P2%E +2PeP) %0 + PR ) - O
. . 1 2 9gll 912 2022 V. (5)
Py = o (PR +2PePy % + PR ) - 2

Field/grid quantities must be interpolated to particle position!
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Integration of Equations of Motion

@ Recall:

1 . -
K= 5= (&"PP) + V(&) = T(£,P) + V (¢)
Non-separable equations — cannot use “naive” leapfrog

integration method!
@ Hamiltonian formulation ensures equations of motion are
divergence free
s Semi-Implicit Modified Leapfrog (ML) integrator [Finn and
Chacén, PoP 2005]

@ Fully Implicit Crank-Nicolson [Finn and del-Castillo-Negrete,
Chaos 2001]
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Modified Leapfrog Integrator

@ Rewrite equations of motion:

® ML can be written My = P§ o &}, where

Ei . 51 = 5 + h/\(élv Pa t) Pe - 5/ = él
h P,=P © ML P =P AT (€, Py t)

Combining,
& =€+ hNE,P,t), P =P+hT( P,t).
@ Symmetrized ML — E,e,/z o P;,/Q ° Pf,/g ° 52/2

@ Semi-implicit — Newton/Picard iterations required for &',P’

@ Symplectic for 4 degrees of freedom
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Crank-Nicolson Integrator

@ CN integrator can be written as:

€ = £+ R e )
P’ = PhT(SLE PEP g by

@ Fully implicit — Newton/Picard iterations required

@ Symplectic for Hamiltonian systems of arbitrary dimensions
Explicit PIC — ML and CN on equal footing
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Initial Conditions

Uniform (immobile) ion background
64 x 64 grid
dt = 0.1 (normalized to wp.)

64 ppc on uniform grid (262144 total particles)

Nonuniform, orthogonal, symmetric grid, e = 0.075
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Straight Line Orbits

3 , — Uniform
LY x10° — Nonuniform, £ =0.025
- ' — Nonuniform, € = 0.075
— Uniform 51252 Nonorthogonal, & = 0.015]
— Nonuniform, € = 0.025 — Nonorthogond, € = 0.075|
514 — Nonuniform, € = 0.075 -
Nonorthogona, £ = 0.015 5125 /\ /\
— Nonorthogond, € = 0.075 ) N o -
513 5.1248 B
x X
5121 - 5.1246 7
5.1244 A
511+
5.1242 4
| | | |
515 1000 1500 20 20
time time

(8) (h)
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Harmonic Oscillator Potential Well

(k) Nonorth, ¢ = 0.035 (1) Logical Mapping
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Cold Plasma Oscillations
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Two-stream Instability

Im(w)
Re(w)
T T T T 3 07l o pcdaa
0.001[-[— Uniform Grid o
— Non-Uniform Grid 06
0s
p 1006 q ¢
N 03
02
1000 3 01
1 1 1 o1
0 10 20 30 ] 05 o 1 s
.t Vo' %pe
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Two-stream Instability

(0) wpet =0

(p) wpet = 22

(q) wpet =25
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Langmuir Waves

2_ 2 2,2
w® = wpe + 3k Vi

0,
‘ Vih ‘ wpiC ‘ Wtheory ‘/o error

0.0 1.00081 | 1.00000 0.081

0.005 | 1.00081 | 1.00148 0.067

0.01 | 1.00644 | 1.00590 0.053

0.015 | 1.01660 | 1.01324 0.332

0.02 | 1.02601 | 1.02341 0.254

0.025 | 1.02887 | 1.03635 0.722
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Landau Damping

@ 128 x 128 grid, 225ppc (3686400 total particles)

VBN, TP \2keag, T2

0,
‘ Vih ‘ YpiC ‘ Ytheory ‘ % error‘

0.06 | -0.0732 | -0.0774 5.426

0.08 | -0.1453 | -0.1521 4.471

1e06

0.10 | -0.1504 | -0.1589 5.349

— Uniform Grid
— £4,q=0025

=005
— £;q=0075

0.12 | -0.1311 | -0.1354 3.176
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Future Work

@ Finish incorporation of nonorthogonal grids into full PIC code

@ OML charging of dust grain in uniform plasma - Validation of
full PIC

@ Particle emission from surface of grain — Potential well?77

@ 2 dust particles case — Attractive force?
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Conclusions

@ Winslow’'s method for boundary conforming initial grid
@ Curvilinear coordinate Poisson solver

@ Hamiltonian-based, symplectic logical grid particle
mover /integrator

@ Code validation examples
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Questions?
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Transformed NL Equations

@ Transform NL force equations to logical grid:

U/ = (1 - hMll) u— hM12V — %h (g]-]-Q)6 + g12¢n)
V/ = —hM21U+(1_hM22)V— %h (g12¢€+g22¢n)
and
g = &+ dh
W= n+Vvh

where we have defined v = é, v =1, and

(o2xee — jr2yee) + v (Ja2Xen — J12¥en)]
22Xen — J12Yen) + v (J22Xan — j12Yim)]

(—jarxee + juyee) + v (—jarXen + j11Yen)]

(—Jorxen + jiryen) + v (—j21Xy + 11Yny)]

S

=

Il
(S S S N
T T &
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