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Introduction

Introduction

Conventional PIC codes rely on uniform
grid cells (polar,spherical)

Specific coordinate system

Multiple grid resolutions often required
within domain

Fine resolution near dust grains
Less resolution near outer boundary of
domain
PIC processes become very complex on
nonuniform domain
(weighting/interpolation/location)

Why not map physical grid onto a uniform,
unitary logical grid and run PIC there?

Figure: Stair-stepping
along curved boundary
[Miloch,et al., Phys.
Rev. E 2008]



Development of an Arbitrary Curvilinear-Coordinate PIC code

PDE-Based Grid Generation

1 Introduction

2 PDE-Based Grid Generation

3 Curvilinear Coordinate Poisson Solver

4 Weighting and Interpolation

5 Logical Grid Particle Mover

6 Validation

7 Future Work/Conclusions



Development of an Arbitrary Curvilinear-Coordinate PIC code

PDE-Based Grid Generation

Differential Geometry Review

Jacobian and its inverse:

j ij =

(

∂x i

∂ξj

)

, κi
j =

(

∂ξi

∂x j

)

i , j = 1, · · · , n

Metric tensors:

gij = jT j =
∂xk

∂ξi

∂xk

∂ξj
, g ij = κκT =

∂ξi

∂xk

∂ξj

∂xk
i , j , k = 1, · · · , n

Can easily convert between covariant and contravariant in 2d:

g ij = (−1)i+j g3−i ,3−j

g

gij = (−1)i+j
gg3−i ,3−j
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PDE-Based Grid Generation

Mapping
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Map should be:

Smooth (at least continuous and differentiable)
Orthogonal (preferable but not necessary)
Well-adapted to the physical system
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PDE-Based Grid Generation

Elliptic Grid Generation

Techniques using systems of PDEs to derive coordinate
transforms are very popular for structured grid generation

Elliptic, parabolic, hyperbolic, etc.

Advantages:

Extremum principle
Smoothness of solution
“one-to-one” mapping

Disadvantages:

System of PDEs must be solved numerically (nonlinear solver)
Boundary conditions must be chosen carefully to ensure
orthogonality
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PDE-Based Grid Generation

Winslow’s Method [JCP 1967 ]

Uncoupled Laplace’s equation

∇2
xξ

i =
∂

∂x j

∂ξi

∂x j
= 0

Transform to logical grid

g ik(x)
∂2xp

∂ξi∂ξk
= 0

Invert metric tensor:

g22xξξ − 2g12xξη + g11xηη = 0
g22yξξ − 2g12yξξ + g11yηη = 0

System of two nonlinear coupled equations—solved with a
Newton-Krylov solver
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PDE-Based Grid Generation

Example Grids
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Example Grids
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PDE-Based Grid Generation

Example Grids
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Curvilinear Coordinate Poisson Solver

Logical Space Poisson Equation

Transform ∇2
xΦ = −ρ to logical grid

∂

∂ξm

(

f Jg im ∂Φ

∂ξi

)

= −f Jρphys = −f ρlog

f = (1, r) is a “geometry factor”

Azimuthal or axial symmetry

Variational principle approach to discretization of Poisson
equation

Symmetric and positive-definite
Solved using unpreconditioned CG

Physical potential is now mapped onto the logical grid
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Curvilinear Coordinate Poisson Solver

Method of Manufactured Solutions

Pick a potential which satisfies chosen B.C.’s

Φ (r , θ) = 1 − r3 + (r − r1) (r2 − r) cos (θ)

Analytically calculate ρ using Poisson’s eqn, insert into solver

Cylindrical:

ρ (rc , θ) = −9rc +

(

−3 +
r1r2

r2
c

)

cos (θ)

Spherical:

ρ (rs , θ) = −12r +

(

−4 +
2r1r2

r2
s

)

cos (θ)

Compare numerical and exact solns via L2-norm

2nd order accuracy observed for all cases



Development of an Arbitrary Curvilinear-Coordinate PIC code

Curvilinear Coordinate Poisson Solver

Method of Manufactured Solutions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

 

 

0

0.2

0.4

0.6

0.8

1

(k) Physical Grid

0
10

20
30

40
50

60
70

0

20

40

60

80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ηξ
φ

(l) Logical Grid

Figure: MMS Potential



Development of an Arbitrary Curvilinear-Coordinate PIC code

Weighting and Interpolation

1 Introduction

2 PDE-Based Grid Generation

3 Curvilinear Coordinate Poisson Solver

4 Weighting and Interpolation

5 Logical Grid Particle Mover

6 Validation

7 Future Work/Conclusions



Development of an Arbitrary Curvilinear-Coordinate PIC code

Weighting and Interpolation

Logical Grid Weighting/Interpolation

Particle shape is uniform and symmetric on logical grid

Require adjoint operations

Weighting: qp → ρg ρg =
∑

p Sgpqp

Interpolation: Eg → Ep Ep =
∑

g SpgEg

Non-adjoint operators results in loss of momentum
conservation, grid heating [Birdsall and Langdon, Adam Hilger

1991 ]

Implemented schemes

Bilinear
4 node stencil
Alog = dξdη

2nd order accurate

Biquadratic
9 node stencil
Alog = 4dξdη

2nd order accurate
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Logical Grid Particle Mover

Considerations

On physical grid, particles obey Newton-Lorentz force
equations:

m
dv

dt
= F = qE

dx

dt
= v

No existing standard for PIC with nonuniform gridding

Require iterative cell-search algorithm for physical space mover
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Logical Grid Particle Mover

Transformed NL Equations

Transform NL force equations to logical grid:

dξi

dt
= vj

∂ξi

∂xj
≡ ui

dui

dt
= ∂ξi

∂xj

dvj

dt
+ vj

d
dt

(

∂ξi

∂xj

)

Ficticious forces term: vj
d
dt

(

∂ξi

∂xj

)

Analagous to centrifugal/Coriolis forces



Development of an Arbitrary Curvilinear-Coordinate PIC code

Logical Grid Particle Mover

BUT...
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Single particle in harmonic oscillator potential well: Φ = A
`

x2 + y2
´

1d nonuniform grid: x = ξ + ǫξ2

1+ǫ

Lose energy/momentum conservation

Transformed NL force equations do not conserve phase-space area!
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Logical Grid Particle Mover

Hamiltonian Based Approach

Apply contact transformation using an F2(x ,P , t) generating
function:

pi =
∂F2

∂xi

ξi =
∂F2

∂Pi

K (ξ,P) = H (x(ξ,P),p(ξ,P)) +
∂F2

∂t
.

Assuming a time-independent grid, we obtain the logical grid
Hamiltonian:

K =
1

2m

(

g jkPjPk

)

+ Ṽ (ξ) = T (ξ,P) + V (ξ)
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Logical Grid Particle Mover

Equations of Motion

Apply Hamilton’s equations:

ξ̇i =
∂K

∂Pi
, Ṗi = −

∂K

∂ξi

Resulting equations of motion:

ξ̇ = 1
m

(

g11Pξ + g12Pη

)

η̇ = 1
m

(

g12Pξ + g22Pη

)

Ṗξ = − 1
2m

(

P2
ξ

∂g11

∂ξ
+ 2PξPη

∂g12

∂ξ
+ P2

η
∂g22

∂ξ

)

− ∂Ṽ (ξ)
∂ξ

Ṗη = − 1
2m

(

P2
ξ

∂g11

∂η
+ 2PξPη

∂g12

∂η
+ P2

η
∂g22

∂η

)

−
∂Ṽη(ξ)

η

Field/grid quantities must be interpolated to particle position!
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Logical Grid Particle Mover

Integration of Equations of Motion

Recall:

K =
1

2m

(

g jkPjPk

)

+ Ṽ (ξ) = T (ξ,P) + V (ξ)

Non-separable equations → cannot use “naive” leapfrog
integration method!

Hamiltonian formulation ensures equations of motion are
divergence free

Semi-Implicit Modified Leapfrog (ML) integrator [Finn and

Chacón, PoP 2005 ]
Fully Implicit Crank-Nicolson [Finn and del-Castillo-Negrete,

Chaos 2001 ]
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Logical Grid Particle Mover

Modified Leapfrog Integrator

Rewrite equations of motion:
Ṗ = Υ(ξ,P, t) and ξ̇ = Λ(ξ,P, t)

ML can be written Mh = Pe
h ◦ ξi

h where

ξi
h :

{

ξ1 = ξ + hΛ(ξ1,P, t)
P1 = P

, Pe
h :

{

ξ′ = ξ1

P′ = P1 + hΥ(ξ1,P1, t)

Combining,

ξ′ = ξ + hΛ(ξ′,P, t), P′ = P + hΥ(ξ′,P, t).

Symmetrized ML → ξe
h/2 ◦ Pi

h/2 ◦ Pe
h/2 ◦ ξi

h/2

Semi-implicit → Newton/Picard iterations required for ξi ,Pi

Symplectic for 4 degrees of freedom
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Logical Grid Particle Mover

Crank-Nicolson Integrator

CN integrator can be written as:

ξ′ = ξ + hΛ(ξ+ξ′

2 , P+P′

2 , t + h
2 )

P′ = P + hΥ(ξ+ξ′

2 , P+P′

2 , t + h
2 )

Fully implicit → Newton/Picard iterations required

Symplectic for Hamiltonian systems of arbitrary dimensions
Explicit PIC → ML and CN on equal footing
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Validation

Test Grids
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Validation

Initial Conditions

Uniform (immobile) ion background

64 x 64 grid

dt = 0.1 (normalized to ωpe)

64 ppc on uniform grid (262144 total particles)

Nonuniform, orthogonal, symmetric grid, ǫ = 0.075
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Validation

Straight Line Orbits
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Validation

Harmonic Oscillator Potential Well
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Validation

Cold Plasma Oscillations
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Validation

Two-stream Instability
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Validation

Two-stream Instability
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Validation

Langmuir Waves

ω2 = ω2
pe + 3k2v2

t,e
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vth ωPIC ωtheory % error

0.0 1.00081 1.00000 0.081

0.005 1.00081 1.00148 0.067

0.01 1.00644 1.00590 0.053

0.015 1.01660 1.01324 0.332

0.02 1.02601 1.02341 0.254

0.025 1.02887 1.03635 0.722
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Validation

Landau Damping

128 x 128 grid, 225ppc (3686400 total particles)

ωi = −

√

π

8

ωpe

|k3λ3
De |

exp

[

−

(

1

2k2λ2
De

+
3

2

)]
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vth γPIC γtheory % error

0.06 -0.0732 -0.0774 5.426

0.08 -0.1453 -0.1521 4.471

0.10 -0.1504 -0.1589 5.349

0.12 -0.1311 -0.1354 3.176
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Future Work/Conclusions

Future Work

Finish incorporation of nonorthogonal grids into full PIC code

OML charging of dust grain in uniform plasma - Validation of
full PIC

Particle emission from surface of grain → Potential well???

2 dust particles case → Attractive force?
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Future Work/Conclusions

Conclusions

Winslow’s method for boundary conforming initial grid

Curvilinear coordinate Poisson solver

Hamiltonian-based, symplectic logical grid particle
mover/integrator

Code validation examples
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Future Work/Conclusions

Questions?
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Future Work/Conclusions
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Future Work/Conclusions

Transformed NL Equations

Transform NL force equations to logical grid:

u′ = (1 − hM11) u − hM12v − qh
m

(

g 11Φξ + g 12Φη

)

v ′ = −hM21u + (1 − hM22) v − qh
m

(

g 12Φξ + g 22Φη

)

and

ξ′ = ξ + u′h

η′ = η + v ′h

where we have defined u = ξ̇, v = η̇, and

M11 = 1
J

[u (j22xξξ − j12yξξ) + v (j22xξη − j12yξη)]

M12 = 1
J

[u (j22xξη − j12yξη) + v (j22xηη − j12yηη)]

M21 = 1
J

[u (−j21xξξ + j11yξξ) + v (−j21xξη + j11yξη)]

M22 = 1
J

[u (−j21xξη + j11yξη) + v (−j21xηη + j11yηη)]
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