
A Study of Two-Fluid Plasma Equations using
the Discontinuous Galerkin Method

B. Srinivasan
Aerospace and Energetics Research Program,

University of Washington, Seattle, WA 98195-2250.

Presentation for Oak Ridge National Laboratory
5 October 2009



Outline

I Motivation

I Two-Fluid Plasma Model

I Asymptotic Approximations and Hall-MHD

I Numerical Methods: Finite Volume and Finite Element

I Summary of Finite Volume and Finite Element Comparisons

I Applications: Two-Fluid Model Vs Hall-MHD

I Applications: 3-D Z-pinch

I Conclusions



Abstract & Motivation

I Study two-fluid plasma model. Two-fluid effects become
significant when L ≈ δi and τ ≈ 1/ωci . The Hall and
diamagnetic drift terms capture the two-fluid physics.

I Study of accurate and computationally efficient numerical
methods to resolve two-fluid physics for problems with sharp
gradients

I Comparisons of two-fluid model to the asymptotic model,
Hall-MHD for captured physics and computational effort

I To develop an accurate and computationally efficient
numerical method in full 3-dimensions for applications of the
two-fluid plasma model towards real experiments
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Two-Fluid Plasma Model

Euler equations for ion and electron fluids. Writing these in
divergence form ∂Q

∂t +∇ · F = S aids the numerical development.

∂ρs

∂t
+∇ · (ρsus) = 0

∂ρsus

∂t
+∇ · (ρsusus + ps I) =

ρsqs

ms
(E + us × B)

∂εs
∂t

+∇ · ((εs + ps)us) =
ρsqs

ms
us · E

εs ≡
ps

γ − 1
+

1

2
ρsu

2
s .

Subscript s denotes species. Source terms couple fluids and fields.
Assuming collisionless plasma (no resistivity, no viscosity, etc.)
Assuming isotropic pressure (sufficient collisions to approximate
Maxwellian)



Two-Fluid Plasma Model

Maxwell’s equations evolve the electric and magnetic fields.

∂B

∂t
+∇× E = 0

1

c2

∂E

∂t
−∇× B = −µ0

∑
s

qs

ms
ρsus

Additional constraints are required to preserve divergence,

∇ · E =
%c

ε0
∇ · B = 0

Perfectly hyperbolic Maxwell’s equations are used to reduce
divergence errors wherever possible1.
1Munz et. al, Computer Physics Communications, 2000.



Parallel Dispersion Diagrams for the Two-Fluid Model

Parallel propagation dispersion diagrams, ω vs k
Left: R- and L-mode waves for the two-fluid plasma model
Right: Whistler wave for the two-fluid plasma model that has an
asymptote at the electron cyclotron frequency



Two-Fluid Plasma Model Validity

I Valid for electron demagnetization - electron inertia

I Isotropic pressure assumption is valid when
rLi << L
rLi >> L

I For rLi ≈ L anisotropic pressure tensor needed (FLR effects).
Being investigated by another student in the group.
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Approximation 1 - Only Neglect Electron Inertia

I Ions are more massive than electrons so neglect electron mass.

I Electron momentum equation reduces to generalized Ohm’s
law

neqeE = ∇pe − Je × B.

where Je = J− Ji .

I Electron energy equation becomes (no electron kinetic energy)

∂εe
∂t

+∇ · ((εe + pe)ue) = Je · E

εe ≡
pe

γ − 1
.



No Electron Inertia Parallel Dispersion Diagram

I Blue and green lines: Waves that grow linearly with
asymptote at light speed, blue is whistler wave

I Red line: Ion cyclotron wave



Approximation 2 - Only Infinite Light Speed

I Ignore high frequency electromagnetic waves. Regime of
interest lies in lower frequency plasma waves.

I Achieved by assuming that the vacuum permittivity of free
space, ε0, is 0

I No displacement currents

I Reduced Ampere’s law

J =
1

µ0
∇× B

such that J = Ji + Je .



Charge Neutrality Implied with c →∞ Assumption

I Can have finite ∇ · E with ε0 → 0 in Gauss’ law

∇ · E =
%c

ε0

so implies %c = 0.

I ni = ne in Gauss’ law eliminates ne equation

I Equivalent to infinite light speed approximation



Infinite Light Speed Parallel Dispersion Diagrams

I Blue line: Whistler wave with asymptote at electron cyclotron
frequency

I Red line: Ion cyclotron wave with asymptote at ion cyclotron
frequency



Reduction to Hall-MHD

I Both (me → 0, c →∞) approximations applied together

I Two-fluid electron momentum reduces to generalized Ohm’s
law

I Reduced Ampere’s law with no displacement currents

I No electron continuity equation

I Reduced electron energy equation - no kinetic energy



Hall-MHD Parallel Dispersion Diagrams

I Red line: Ion cyclotron wave

I Green line: Ion acoustic wave

I Blue line: Unbounded whistler wave in regimes where L ≈ δi ,
and τ ≈ 1/ωci . Parabolic whistler wave implies Vw ∝ k

I For L >> δi , dispersion diagram sits at origin, ideal-MHD



Whistler Wave Comparison

I Green line: Two-fluid model whistler wave

I Red-dashed: Infinite light speed only whistler wave

I Blue line: Hall-MHD whistler wave

I Finite electron mass allows whistler wave to have an
asymptote at electron cyclotron frequency



Reduction to Ideal-MHD

I Hall and diamagnetic terms neglected (small Larmor radius
assumption)

I Ohm’s law reduces to,

E = −u× B

I Not applicable in regimes with two-fluid effects such as:
I Hall thrusters that require ion demagnetization
I Field Reversed Configurations (FRC) for tearing and tilt

instabilities
I turbulence through microinstabilities
I other high frequency or short length scale regimes
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Nature of Equation Systems Used

I Studying balance laws of the form:

∂Q

∂t
+∇ · F = S,

I Q represents the conserved variables
I F represents the flux
I S represents the source terms

I Two-fluid equations: Euler and Maxwell, in balance law form

I Source Jacobian has purely imaginary eigenvalues - dispersive,
not dissipative like Navier-Stokes

I Hall-MHD system has second order derivatives of magnetic
field which are treated in a slightly different manner (parabolic
terms)



High Resolution Wave Propagation Method

I Homogeneous hyperbolic equation solved first1

I Solution in each cell represented by averages
I Riemann problem solved at each cell interface for conserved

variables, allows for discontinuous solutions
I Edge fluxes computed and used to update cell values
I Higher order accuracy achieved with high-order corrections

I Source splitting is used: after homogeneous hyperbolic
update, Runge-Kutta is used to advance ∂Q

∂t = S

1LeVeque, Finite Volume Methods for Hyperbolic Problems, 2002



Runge-Kutta Discontinuous Galerkin Method1

I Generalization of finite volume as a finite element method

I Balance law multiplied by basis and integrated over element

∂

∂t

∫
Ii

vr (x)Qdx +

∫
Ii

vr (x)
∂F

∂x
dx =

∫
Ii

vr (x)S.

I Riemann problem solved at each interface for edge fluxes

I Lax fluxes are most often used (FV uses Roe fluxes)

I 3rd order Runge-Kutta for time integration - RKDG

I Effective resolution = Nr , (N=resolution, r=spatial order).

I CFL≤ 1/(2r − 1), where r is the spatial (polynomial) order

1Cockburn and Shu, Journal of Scientific Computing, 2001



Limiters

I In FV method, limiters applied to the characteristic variables
(waves)

I In FE method, limiters applied directly to conserved or
characteristic variables

I For problems with many shocks, no advantage of using
higher-order because limiters reduce the order to 1 in these
regions

I High-order FE limiters explored and used that do not reduce
order to 1 everywhere there are sharp gradients1

1Krivodonova, Journal of Computational Physics, 2007



FE Implementation for Hall-MHD

I Hall-MHD not purely in balance law form, has parabolic terms

I Auxiliary variables, Je and E , introduced with full DG
expansion, for example reduced Ampere’s law in 1-D is written
as ∫

Ii

vr (x)Jedx − 1

µ0

∫
Ii

vr (x)
∂B

∂x
dx = −

∫
Ii

vr (x)Ji .

I Auxiliary equation fluxes and sources solved the same way as
the conserved quantities without the Runge-Kutta time
stepping

I Limiters used for auxiliary variables



Current Numerical Development - Implicit-DG

I No stringent CFL requirement like explicit methods

I Accuracy considerations alone determine time step

I Two-fluid time step does not have to be restricted by light
speed or electron plasma frequency

I Potential methods1:
I 1st and 2nd order Backward Differencing (BDF1, BDF2)
I 2nd order Crank-Nicolson (CN2)

1Wang and Mavriplis, Journal of Comp. Physics, 2007



Current Numerical Development - Implicit-DG

I Spatial discretization similar to the FE case by multiplying the
balance law with basis functions and integrating over element

I Grouping time and spatially dependent components gives ODE

M
∂Q

∂t
+ Rp(Q) = 0

with M being the mass matrix.

I Formulation for BDF1 for the ODE described is

M

∆t
(Qn+1

h −Qn
h) + Rp(Q

n+1
h ) = 0

where

Qh =
r∑

r=1

Qr (t)vr (x)



Current Numerical Development - Implicit-DG

I Solve system of Ax = b for x by inverting matrix A.

I BDF2, CN2 methods can be formulated similarly.

I Current implementation uses PETSC’s Scalable Non-linear
Equation Solvers (SNES) for Newton-based methods

I Implemented in 1d so far and results have been benchmarked
to explicit cases

I More optimization needed and then apply to simulations with
realistic light speed and real electron mass

I Results will be presented at APS
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Summary of Finite Volume and Finite Element
Comparisons - Euler

Submitted paper to Communications in Computational Physics,
2009.

I Two-fluid plasma model has undamped physical oscillations
from source terms (not numerical dispersion)

I Source Jacobian, ∂S
∂Q , has purely imaginary eigenvalues

I No explicit dissipation in the system

I Euler equations with dispersive source terms as model
equations - has analytical solution



Summary of Finite Volume and Finite Element
Comparisons - Euler

I Simulates quasi-neutral ion cyclotron waves, uniform plasma

I Source terms provide physical dispersion

I Magnetic fields are uniform in space and time

∂ρs

∂t
+∇ · (ρsus) = 0

∂ρsus

∂t
+∇ · (ρsusus + ps I) = ρsωc(u× b̂)

∂εs
∂t

+∇ · ((εs + ps)us) = 0

εs ≡
ps

γ − 1
+

1

2
ρsu

2
s



Summary of Finite Volume and Finite Element
Comparisons - Euler

I FV CFL is 1 whereas FE CFL depends on spatial order

I For small ωc (small source term), FV uses less computational
effort to provide a more accurate solution

I For large ωc , FV has phase errors due to source splitting

I For large ωc , FE with high order and low resolution is more
accurate and uses less computational effort



Summary of Finite Volume and Finite Element
Comparisons - Euler
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For ωc = 10, FV method more accurate at a CFL of 1. FE method
with the same effective resolution is less accurate.



Summary of Finite Volume and Finite Element
Comparisons - Euler
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For ωc = 50, 16th order FE using only 6 cells (effective resolution
of 96) uses the same computational effort as the 500 cell FV and
provides higher accuracy by an order of magnitude.



Summary of Finite Volume and Finite Element
Comparisons - Two-Fluid 1-D Z-pinch

I Comparisons for ability to hold equilibrium in 1-D
axisymmetric Z-pinch to t = 50 transit times.

I FV is more diffusive than FE with high order, low resolution

I Parameters: rLi/L = 1/16, δi/L = 1/10

I Source splitting for the dispersive source terms in FV causes
the decay

I FE at high order, low resolution is more accurate



Summary of Finite Volume and Finite Element
Comparisons - Two-Fluid 1-D Z-pinch

Intial Conditions for 1-D Z-pinch
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Summary of Finite Volume and Finite Element
Comparisons - Two-Fluid 1-D Z-pinch
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8th order FE using only 8 cells (effective resolution of 64) and 3rd

order FE using 40 cells (effective resolution of 120) use less
computational effort than the 256 cell FV and provide higher
accuracy, i.e. hold equilibrium for longer.



Summary of Finite Volume and Finite Element
Comparisons - Two-Fluid 2-D Z-pinch

Intial Conditions for electron density in 2-D Z-pinch
Perturbation applied to initialize 8 wavelengths in the system
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Summary of Finite Volume and Finite Element
Comparisons - Two-Fluid 2-D Z-pinch

Electron density after 2 Alfven transit times. FV (left), FE (right)
using same effective resolution of 256
Drift parameter vd/vsi ≈ 8, vd = ve − vi , rLi/rp ≈ 1/3, rp = 0.25.



Summary of Finite Volume and Finite Element
Comparisons - Two-Fluid 2-D Z-pinch
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Growth rates of lower-hybrid drift instability. Increasing resolution
makes growth rates approach the high resolution solution.
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Two-Fluid Vs Hall-MHD

I Compared for applications of:
I Electromagnetic Plasma Shock
I Geospace Environment Modeling (GEM) Challenge Magnetic

Reconnection
I 2-D Axisymmetric Z-pinch

I Floor values used for Hall-MHD density/pressure for stability
wherever necessary

I No explicit dissipation added for two-fluid model

I Z-pinch problem has artificial resistivity for Hall-MHD

I Only explicit time-stepping scheme used in these comparisons.
Implicit to follow as future work.



Electro-Magnetic Shock Comparisons for rLi = 7× 10−1
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I Two-fluid, c ≈ 102VA

I Hall-MHD, VW ≈ 105VA,
from minimum k = ∆x/π

I Two-fluid and Hall-MHD ion
density after 10
characteristic transit times

I Two-fluid model with
several mass ratios

I Hall-MHD takes 135 times
more computational effort
than the two-fluid model.



Electro-Magnetic Shock Comparisons for rLi = 7× 10−2
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I Two-fluid and Hall-MHD ion
density after 10
characteristic transit times

I Two-fluid model with
several mass ratios, using
higher mass ratios becomes
too stiff in this regime

I Hall-MHD takes 14 times
more computational effort
than the two-fluid model.



Electro-Magnetic Shock Comparisons in Ideal MHD regime
for rLi = 7× 10−4
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I MHD limit has rLi = 0.

I Two-fluid, Hall-MHD and
ideal-MHD ion density after
10 characteristic transit
times

I Two-fluid model becomes
stiff in this ideal-MHD
regime.

I Hall-MHD takes less
computational effort than
the two-fluid model in this
regime.



Magnetic Reconnection GEM Challenge Problem

I Left: Initial condition of ion density
Right: Initial condition of Bx magnetic field

I Small perturbation applied in Bx and By

I Two-fluid model uses mi
me

= 25 and light speed, c ≈ 10VA



Magnetic Reconnection GEM Challenge Problem

Without divergence of magnetic field corrections:

I Left: Two-fluid solution of ion density at ωci t = 20
Right: Hall-MHD solution of ion density at ωci t = 20

I Island formation in two-fluid model that merges to the left

I Two-fluid model uses mi
me

= 25 and light speed, c ≈ 10VA



Magnetic Reconnection GEM Challenge Problem

With divergence of magnetic field corrections:

I Left: Two-fluid solution of ion density at ωci t = 20
Right: Hall-MHD solution of ion density at ωci t = 20

I Islands form and merge for both models



Magnetic Reconnection - ∇ · B errors
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I Perfectly hyperbolic
Maxwell works with
two-fluid to fix ∇ · B
errors

I ∇ · B error potentials for
Hall-MHD used1

1Dedner et al, Journal of Comp. Phys., 2002



Magnetic Reconnection - Reconnected Flux
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I Two-fluid and Hall-MHD
reconnection rates
consistent with previous
literature1.

I Hall term necessary for
physically correct
reconnection rates

I Hall-MHD takes 15 times
more computational
effort than the two-fluid
model for a comparable
solution.

1Shay et al., Journal of Geophysical Research, 2001



Axisymmetric Z-pinch Instabilities

I Left: Two-fluid ion density after 1.25 Alfven transit times
Right: Hall-MHD ion density after 1.25 Alfven transit times

I Initializations same as Loverich et al.1 with RLi
Rp
≈ 3, mi

me
= 25

and c ≈ 16VA, with 8 wavelength perturbation
1Loverich & Shumlak, Physics of Plasmas, 2006



Axisymmetric Z-pinch Instability Growth Rates
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I Two-fluid and Hall-MHD
growth rates for the
lower-hybrid drift instability

I Artificial resistivity used for
Hall-MHD to set a cut-off
wave number

I This is the lower-hybrid drift
instablity that is not
captured by ideal-MHD.

I Hall-MHD requires 35 times
the computational effort of
the two-fluid model for this
problem.
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3-D Z-pinch using FE - Sausage mode

I Two-fluid model solution after t = 0, 4tA, 5tA
I Parameters same as the 2-D Z-pinch shown previously

I Note small-wavelength instabilities on top of single
wavelength perturbation



3-D Z-pinch using FE - Kink mode

I Two-fluid model solution after t = 0, 4tA, 5tA
I Note small-wavelength instabilities on top of single

wavelength perturbation
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Conclusions

I Full two-fluid plasma model studied

I Studied and compared finite volume and finite element
methods for the two-fluid model

I Applied asymptotic approximations, derived Hall-MHD

I Compared two-fluid model to Hall-MHD for electromagnetic
plasma shock, magnetic reconnection, 2-D Z-pinch

I Artificially decreasing the ion-to-electron mass ratio and
artificially decreasing the ratio of the speed of light to the
Alfven speed in the two-fluid plasma model also captures
Hall-MHD with less computational effort.

I Implemented fully 3-D FE for the two-fluid model



Future Work

I Apply implicit DG with realistic light speed and real electron
mass to two-fluid simulations of

I reconnection
I Z-pinch
I FRC Hill’s vortex

I Extend the 2D FRC simulations previously performed to study
two-fluid instabilities in 3D FRCs


