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Why is magnetic reconnection important?
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Why is it important (cont.)?

It is one of the primary mechanisms for energy release and
magnetic self-organization in plasmas.

It is at the core of very energetic phenomena in nature and
laboratory plasmas: solar �ares, magnetospheric substorms,
sawteeth in tokamaks....

Energy release via magnetic reconnection is usually violent
(explosive!).

Magnetic energy is converted into kinetic and thermal plasma
energy.

It can be viewed as a relaxation process whereby the magnetic
�eld changes topology.
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What is magnetic reconnection?

It is the process whereby magnetic �eld lines reattach.

It is a microscopic phenomenon, with macroscopic impact.

Enabled by the presence of parallel electric �elds (supported by
non-ideal MHD physical e�ects).

Nature tells us that it is very fast and violent (explosive) on a
macroscopic scale.

Thus, it follows that the process must be largely
independent of the underlying microscopic

mechanism!
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The problem of fast reconnection

Reconnection must be largely independent of the microscopic
details (e.g., di�usion, viscosities, etc)

But... it has been a mystery how this is possible, given that
reconnection is enabled by such microscopic physics.

Theory has been sparse (only resistive MHD: Sweet-Parker).

Simulations have been used to explore the phenomenon.

Resistive MHD laminar reconnection is too slow (Sweet-Parker)
Turbulent reconnection can be fast (Lapenta, 2008)
Extended MHD e�ects enable fast reconnection (GEM
challenge, 2001).

Simulations can only explore a small region in parameter space
⇒controversy prone!

We aim at providing a fundamental theoretical understanding
of fast reconnection.
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Ideal MHD and the frozen-in law

Ideal Ohm's law
E+v×B = 0

Supports no parallel electric �eld: E ·B = 0 ⇒Magnetic �ux is
conserved (no reconnection possible!)

This is easiest to see in 2D, where for the magnetic �ux Ψ s.t.
B = z×∇Ψ, (∇ ·B = 0)

E +v×B = 0

⇓
∂ Ψ

∂ t
+v ·∇Ψ = 0

Magnetic �ux is frozen in the plasma
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Resistive MHD

Resistive Ohm's law

E+v×B = ηJ

E‖ = ηJ‖ ⇒Magnetic reconnection is possible!

Sweet-Parker analysis (1957-58)

One �uid plasma, �nite resistivity

Alfvén speed VA = B2

x

4πn

Magnetic Reynolds Rm = wVA
Dm

Magnetic di�usivity Dm = c2η

4π

Continuity δ vy = w vx

Ez ∼ vyBx ∼ ηJz ⇒ Ez ∼ η
1/2 too slow!

Sweet-Parker reconnection rate: solar �ares τSP ∼ 107sec, τexp ∼ 103sec.

There is one piece more of the puzzle!

chaconl@ornl.gov Fast magnetic reconnection
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Hall MHD

Generalized Ohm's law

E+v×B = ηJ+
di

n
(J×B−∇p)

η resistivity;

di = c/ωpl ,i ion skin depth ⇒ ion inertia

Supports fast dispersive waves ω ∼ k2, which have been
claimed to play a fundamental role in reconnection (Drake,
Biskamp, 1990s)
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Electron MHD (EMHD)

Generalized Ohm's law

E+v×B = ηJ+
di

n
(J×B−∇p)+

d2e
n

dJ

dt

η resistivity;

di = c/ωpl ,i ion skin depth

de = c/ωpl ,e electron skin depth ⇒ electron inertia
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Two-�uid e�ects

Generalized Ohm's law

E+v×B = ηJ+
di

n
(J×B−∇p) +

d2e
n

dJ

dt
+ηH∆J

η resistivity;

di = c/ωpl ,i ion skin depth

de = c/ωpl ,e electron skin depth ⇒ electron inertia

ηH perpendicular electron viscosity ⇒ electron pressure tensor
e�ects

chaconl@ornl.gov Fast magnetic reconnection
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What we know about extended MHD reconnection...

Extended MHD supports fast reconnection (GEM challenge):

Ez independent of dissipation mechanism
Occurs when ion inertial length di > δSP .

Controversies on:

Necessary ingredients for fast reconnection (X-point geometry,
fast dispersive waves, etc.)
Scaling of reconnection rate with fundamental system
parameters (di , de , current sheet length w , etc.)
Nature of transition (hysteresis?) between di�erent regimes:
resistive-Hall, Hall-EMHD [Cassak et al., PRL, 2005, 2007]

Observation

A signi�cant amount of theoretical insight on reconnection is
simulation-driven, which is controversy-prone.
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Goals

To establish a theoretical framework that enables a priori theoretical
understanding

Use it to understand intrinsic limits of reconnection rates and transitions
in all regimes of interest (resistive, Hall, EMHD)

Some issues we will address in this talk:

1 Role of fast dispersive waves in fast reconnection (are they really needed?)

2 Fast reconnection vs. dissipation: a synergistic picture

3 Role of electron inertia in hysteresis and current sheet collapse

Approach

To formulate a non-linear reduced dynamical system for key quantities de�ning
the reconnection region

From continuum PDEs ⇒ few ODEs for discrete quantities

chaconl@ornl.gov Fast magnetic reconnection
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Hall MHD model
Simakov, Chacón, PRL (2008), PoP (2009)

∂t
~V +~V ·∇~V + ∇P = ~B ·∇~B,

∂t
~B +∇× [~B× (

ion flow︷︸︸︷
~V −di~j︸ ︷︷ ︸
e �ow

)] =−η∇× (∇×~B) +ηH∇× (∇×∇
2~B)︸ ︷︷ ︸

e viscosity

∇ ·~V = 0

We ignore inertial terms (interested in resistive-to-Hall transition)
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Reconnection region geometry

x

y

δ
z

By

Bx

V y
out ~~Ve,y

out

V x
out ~~ V e,x

outV x
in <<Ve,x
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V y
in Ve,y
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By
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h

in

in
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x

∆ given by external length scale

h = max(δ ,di ) i.e. no separation for δ > di
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Set of discrete constraints (dt = 0)

Inside (di�usion region)

Bx : − B in
x V

in
e,y

δ
= D

[
B in
y

δw
− B in

x

δ2

]
By :
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in
e,x

w = D

[
B in
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y

w2
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Bz :di
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B in
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(
1
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∆
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Reconnection rate

De�ne ξ = δ/w (di�usion region aspect ratio).

Reconnection rate Ez ≡−(η−ηH∇2)Jz becomes:

Ez =
√
2

(B in
x )2

wξ
S(ξ )−1(1−ξ

2) ; S(ξ )−1 = S−1η +S−1H (ξ
−2+1)

Sη � 1 and SH � 1 are resistive and viscous (hyper-resistive)
Lundquist numbers

Larger Ez occurs for ξ � 1⇒ consider ξ 2� 1 limit
(but allow ξ < 1)
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Fixed-point analysis
[Simakov, Chacón, PRL (2008); Malyshkin, PRL (2008)]

Solution in all regimes of di :

ξ ≈

√ √
2

∆S(ξ ) +
√
2d2i S(ξ )2

; Ez ≈ (B in
x )2

√ √
2

wS(ξ )
+

2d2i
w2

di → 0 (Sweet-Parker): ξ ∝ S
−1/2
η , Ez ∝ S

−1/2
η

di � δSP (EMHD): ξ ≈ 1
diS(ξ ) , Ez =

√
2B2

x
di
w

(dissipation

independent!)

Transition occurs for di ∼ δSP .

No hysteresis
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Numerical validation: island coalescence problem

Ideally unstable ⇒ driven reconnection

Equilibrium

Ψ0(x ,y) =−λ ln
[
cosh

(
x
λ

)
+ εcos

(
y
λ

)]
Diagnostics

FWHM: δ = 2
√
2log2y∗, with ∂2y jz (0,y∗) = 0

w measured at the maximum out�ow

Bx measured up-stream (0,δ/2)

Nonlinear stage: merged islands

Example of Induced Current Sheet (at maximum
reconnection)

EMHD with η 6= 0, de 6= 0, ηH ≡ 0
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Numerical Validation: aspect ratio ξ = δ/w

1.00.5 5.00.1 10.0

0.1

0.2

0.3

0.4

0.5

0.6
ξ

d*

RMHD EMHDTransition

1.00.5 5.00.1 10.0

0.5

1.0

1.5

2.0

d

ξ/ξth

*

RMHD EMHDTransition

ξ from numerical simulations Numerical over analytical results for ξ

36 non-linear simulations with di , η , ηH varying over orders of
magnitude.

Excellent agreement for all di
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Numerical validation: reconnection rates

0.50 5.000.10 10.000.05
0.50

5.00

0.10

10.00

0.05

Ez

d

*

*

RMHD EMHDTransition

1.000.50 5.000.10 10.000.05

0.5

1.0

1.5

2.0

2.5

3.0

d

E   /Ez z
th

* *

*

RMHD EMHDTransition

Ez∗ ≡ Ez/(B in
x )2 from simulations Numerical over analytical results for Ez∗

Ratio of largest to smallest Ez∗ from simulations ≈ 1200

0.5 < Ez∗/E
th
z∗ < 2.3 ⇒ under- or over-predict by factor of 2
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EMHD model with electron inertia

2D (∂z ≡ 0) incompressible two-�uid plasma with an ion
neutralizing background (vi ≈ 0)

∂t
~B∗−∇× [−di~j︸︷︷︸

e flow

×~B∗)] =−η∇× (∇×~B) + ηH∇× (∇×∇
2~B)︸ ︷︷ ︸

e viscosity

~B∗ = ~B +d2e ∇×~j︸ ︷︷ ︸
e inertia

; di = 1

η Resistivity, ηH Electron viscosity, de Electron skin depth
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EMHD discrete equations

Chacón, Simakov, Zocco, PRL (2007),
Zocco, Chacón, Simakov, submitted (2009)

x

y

δ z
x,e

y,eBx

By

w

x

Bz

x

v

v

Bx ≡ x̂ ·Bp(0,δ/2)
By ≡ ŷ ·Bp(w/2,0)
Bz ≡−ẑ ·Bz(w/2,δ/2)

Discrete EMHD Equations

Bx:
dB∗x
dt −B∗x

δ̇

δ
− BzB

∗
x

δw
= D

(
By
δw
− Bx

δ2

)
By:

dB∗y
dt −B∗y

ẇ
w +

BzB
∗
y

δw
= D

(
Bx
δw
− By

w2

)
Bz:

dB∗z
dt −B∗z

(
ẇ
w + δ̇

δ

)
+
(
Bx
w +

By
δ

)(
By
w −

Bx
δ

)
=

−D
(
1

δ2
+ 1

w2

)
Bz +d2e

B2

z

δw

(
1

w2 − 1

δ2

)
B∗x = Bx +d2e (Bx/δ2−By/δw)
B∗y = By +d2e (By/w2−Bx/δw)

B∗z = Bz +d2e (δ−2 +w−2)Bz
D = η + ηH(δ−2 +w−2)
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Fixed Points (steady state d
dt

= 0)

Di�usion region master equation (ξ = δ

w
, d̂e =

de

δ
)[

1+d̂2e (1+ξ2)

1+2d̂2e ξ2

]2
= 1

S(ξ )2

{
1+ 1

ξ2 + d̂2e
1+d̂2e (1+ξ2)

(
ξ2−1

ξ

)2}
S(ξ )−1 = S−1η +S−1H (ξ

−2 +1)

Associated reconnection rate:

Ez = D jz = D
(
Bx

δ
− By

w

)
≈ B2

x

wξ

S(ξ )−1(1−ξ2)

(1+2d̂2e ξ2)
⇒ ξ 2� 1 is preferred!
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Small aspect ratios (ξ 2� 1)

ξ ≈ 1

S(ξ )

1

1+ d̂2e
, Ez ≈

√
2B

2
x

w
(1+ d̂2e )

Resistive regime

δ

de
+ de

δ
≈
(

w
de

)
η√
2Bx

= η∗

Threshold (bifurcation): η∗ & 2

Viscous regime(
δ

de

)3
+ δ

de
≈
(

w
de

)
ηH√
2Bxd2e

= η∗H

δ . de allowed in steady state
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Resistive regime (ηH = 0,η �nite)

ξ ≈ 1
S(ξ )

1
1+d̂2e

⇒ δ

de
+ de

δ
≈
(

w
de

)
η√
2Bx

= η∗

magnetized regime
(δ & de and η∗ > 2)

δ ≈ ηw
Bx

; Ez ≈
B2
x

w

Same as Hall MHD with di = 1.

inertial regime
(δ . de or η∗ < 2)

δ unde�ned!

No steady state: COLLAPSE!
[Ottaviani and Porcelli, PRL,
1993]

Electron viscosity will determine scale in inertial regime
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Viscous regime (η = 0, ηH �nite)

ξ ≈ 1
S(ξ )

1
1+d̂2e

⇒
(

δ

de

)3
+ δ

de
∼
(

w
de

)
ηH√
2Bxd2e

≡ η∗H

magnetized regime δ & de

δ/de ∼ (η∗H)1/3

↘

inertial regime δ . de

δ/de ∼ η∗H

↙

Ez ≈
√
2
B2
x ,max

w
Independent of de , ηH , and X-point aspect ratio ξ !

Bx ,max = max[Bx ,Be
x ], where Be

x ≡ x̂ ·B(0,de/2)
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Resistive-viscous transition: hysteresis!

ξ ≈ S−1 1
1+d̂2e

⇒ δ̂
3−η

∗
δ̂
2 + γ

2
δ̂ −βη

∗
H = 0 ; δ̂ = 1

d̂e
= δ

de

Universal unfolding of pitchfork bifurcation of codimension 2

Features hysteresis when η∗H < (γ/
√
3)3/β
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Numerical validation: resistive regime

δ̂
2−η

∗
δ̂ + γ

2 = 0

Steady state solution: η∗ & η∗crit Nonlinear current collapse: η∗ < η∗crit

γ ≈ 1.65
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Numerical Validation: viscous regime

δ̂
3 + γ

2
δ̂ −βη

∗
H = 0

β ∼ 10
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Numerical Validation: hysteresis

δ̂
3−η

∗
δ̂
2 + γ

2
δ̂ −βη

∗
H = 0
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Outline

1 Introduction

2 Goals

3 Hall MHD: e�ect of ion inertia

4 Electron MHD: e�ect of electron inertia

5 Pair plasmas: role of dispersive waves
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Pair plasma �uid continuum equations
Chacón, Simakov, Lukin, Zocco, PRL (2008)

Pair plasmas feature no mass di�erence: me = mp

However, PIC simulations have found fast reconnection is
possible in pair plasmas!

Fluid model for low-β nonrelativistic pair plasmas:

∂tB
∗
p−∇×

(
v×B∗p

)
=−∇×∇(DBp)

∂tΩ +v ·∇Ω−µ∆Ω = 1
2Bp ·∇jz ; ∆ϕ = Ω

D = η− µd2e
2 ∆, ; B∗p = Bp + d2e

2 ∇×∇×Bp

Linear waves ω = k‖/
√
2+d2e k

2⇒ NO FAST DISPERSIVE WAVES ω ∼ k2
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Fixed Points ( d
dt
≡ 0)

Master Equation for d̂e = de√
2δ

1+ 1

d̂e
2 = 2S(d̂e)

−1
(

w
de

)2 [
1

1+d̂2e
+ S(d̂e)

Sµ

]1/2
, ξ2� 1 ,

(
de
w

)2
� 1

S(d̂e)−1 ≈ S−1η +S−1µ d̂e
2

Associated reconnection rate

Ez≈ S(d̂e)−1 B
2
x

ξ
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Fixed Points ( d
dt
≡ 0)

Master Equation for d̂e = de√
2δ

1+ 1

d̂e
2 = 2S(d̂e)

−1
(

w
de

)2 [
1

1+d̂2e
+ S(d̂e)

Sµ

]1/2
, ξ2� 1 ,

(
de
w

)2
� 1

S(d̂e)−1 ≈ S−1η +S−1µ d̂e
2

Associated reconnection rate

Ez≈ S(d̂e)−1 B
2
x

ξ
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Viscous regime (µ 6= 0, η = 0)

1
d̂3e

+ 1
d̂e
∼ 2 µw

Bxd2e
≡ 2µ∗

magnetized regime δ/de & 1

δ/de ∼ (µ∗)1/3

↘

inertial regime δ/de . 1

δ/de ∼ µ∗(viscous sub-layer)

↙

Ez ≈
√
2B2

x ,max

de

w

Important!

Independence of µ occurs because dissipation mechanism is the same in
both �uid and magnetic �eld equations: synergy?
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Resistive regime (η 6= 0, µ = 0)

(
1+ d̂2e

)
3/2

2d̂2e
≈ ηw

Bxd
2
e

= η
∗

Threshold (bifurcation)
⇓

No solutions for η∗ . 3
√
3

4

magnetized regime δ/de & 1

δ ≈ δSP =
√

ηw
Bx

; Ez ≈
√

η

w B
3/2
x

Sweet-Parker slow reconnection

inertial regime δ/de . 1

δ unde�ned, ∀δ . de : COLLAPSE

Hysteresis!
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Resistive regime (η 6= 0, µ = 0)
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)
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2
e
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√
3
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√
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Numerical Validation: viscous regime

Transition: µ∗ ∼ 1, δ ∼ de Viscous sub-layer: δ ∼
√

µw/(Be
x ) < de
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Summary

We have formulated a theoretical framework to study the intrinsic
limitations of the reconnection rate in a given �uid model. It is based on
a reduced-model analysis of the reconnection region.

We have applied the framework to study transitions and reconnection
rates in EMHD, Hall MHD, and pair plasmas.

The framework's predictions have been successfully benchmarked against
numerical simulations in all regimes of collisionality.

We have con�rmed that:

In EMHD regime, Ez is independent of dissipation and de (fast!).

Transition between resistive and Hall occurs when δSP ∼ di .

In pair plasmas, fast (dissipation-independent) reconnection is
possible, despite the lack of dispersive waves.
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Summary: what we have learned

In EMHD regime, Ez is independent of X-point geometry. It only
depends on di/w with w the length of electron di�usion region.

It appears that fast reconnection is enabled by �ow and magnetic �eld
featuring the same dissipation mechanism (this is true for both pair
plasmas and EMHD).

Dispersive waves are not a necessary ingredient for fast reconnection.

Previously observed hysteretic behavior (Cassak et al, 2005, 2007) is
related to interplay between electron inertia and dissipation, and is not
related to resistive-Hall transition.

Steady-state microscopic physics cannot determine the current sheet
length w , which fundamentally determines the reconnection rate.
Macroscopic physics or transient microscopic phenomena must be
invoked.
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