
Quantifying ETG Transport In Spherical 
Tokamaks With Flow Shear

Walter Guttenfelder

Aug. 28, 2009



Overview

• Relevance of ETG to spherical tokamaks

• ST-like nonlinear gyrokinetic simulations (low aspect ratio, 
shaped, strong E×B shear)

• Convergence of simulations using kinetic ions & electrons 
with grid size, resolution and boundary conditions using 
GYRO (comparison with adiabatic ion model)

• Temperature profile predictions using a model transport 
expression derived from nonlinear simulations



Experimental Example: MAST Thermal Transport
• Considering plasmas PNBI≤2 MW, n~3-5×1019 m-3, Te(0)~Ti(0)≤1.5 keV, 

B~0.45-0.55 T
• χi approaches neoclassical
• χe anomalous, a few times electron

gyroBohm
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E×B Shear Rates Strong Compared to Ion 
Scale Linear Growth Rates

• From [Kinsey et al., 2007], complete suppression expected at γE≈1⋅γlin,max for 
R/a=1.6, κ=1.5 
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ETG Is Potentially Relevant
• One MAST prediction with TGLF works “well”, ion transport neoclassical 

(large E×B shear), electron transport dominated by ETG
• ETG model in TGLF calibrated by one non-linear gyrokinetic simulation

Staebler et al. IAEA 2009; Colyer Stutman et al., PRL 2009

Obviously can not account for flat 
profiles in core of high power 
discharges, but maybe the edge 
– when and where is ETG valid?

ETG?

NSTX



ST-ETG Modeling Goals
Linear stability

• Known linear dependence for low beta, modest shaping [Jenko et al. 2001]

• TGLF will hopefully capture modifications at high beta – benchmarking 
with GS2, GYRO, GKW is underway [motivated by Roach, EPS 2009]

Non-linear transport
• Capture dominant scaling in non-linear transport
• Validate (or recalibrate?) ETG model in TGLF

What are the dominant non-linear scalings?
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Interpreting Published Simulations Assuming a 
Critical Gradient Formulation
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Strong Dependence Of Nonlinear ETG Transport 
On Magnetic Shear Expected

• Interpreting three published sets of simulations assuming a critical 
gradient model
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• Nearly all simulations at low safety factor (q=1.4) – want to expand (s,q) 
parameter space for STs with a consistent set of simulations



ETG Saturation Problems

• Convergence problem in ETG simulations using adiabatic ions for 
magnetic shear > 0.4 [Nevins et al., 2006]

Unphysical, monotonic
spectra



Simulation Issues

• Convergence problem in ETG simulations using adiabatic ions for 
magnetic shear > 0.4

• Evidently kinetic ions (ETG-ki), strong E×B shear (ETG-ai-exb), or finite 
electron collisionality can provide long wavelength cut-off/physical 
saturation mechanism in the simulations
[Nevins et al. 2006; Mikkelsen; Candy et al. 2007; Roach et al., 2009]

• Following simulations for MAST-like mid-radius parameters:
R/a=1.6, r/a=0.5
κ=1.5, δ=0.2
q=1.4, s=0.8
a/LT=3, a/Ln=1
BUT
β=0 (electrostatic), ν=0

Kinetic ions and electrons (mi/me=3600)

Using GYRO but in the local limit
(no n, T, ∇n, ∇T profile variation→
no adaptive source)

E×B shear → Er profile, ωE(r)
Non-periodic, fixed BCs



Ion Scale Transport Suppressed In Local Simulations 
With Experimental Level of E×B Shear

• Kinetic ions and electrons
• 70ρi×70ρi box, 16/64 toroidal/radial modes, 128 velocity space

• Neither simulation well resolved → transport contributions at high kθ not 
falling off rapidly (or at all)
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• Transport peak occurs at kθρe≈0.15
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Increased Box Size Alone Does Not Lead 
To Convergence

• Toroidal/radial grid 16/64→128/512
• Turbulence characteristics (spectra, correlation lengths) remain relatively 

constant
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Equilibrium Gradient Perturbations Are Significant
• Even in local simulations (flat profiles, a/ρe=7500), perturbations grow 

(δTe,n=0/Te~0.01) to cancel equilibrium driving gradients

• Need to optimize boundary regions for these electron scale simulations
(new territory)
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Treatment Of Simulation Boundary
• Fixed boundaries lead to large variation at domain edges (e.g. ∇⋅q)
• Damping n=0 components of distribution counteracts relaxation
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Resulting Convergence Problem Is Mostly 
Explained By Perturbed Equilibrium Gradient

• Exacerbated by resulting stiff transport
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Strength Of Zonal Potential Converges And 
Reaches Steady State

• Radial modes (zonal/axisymmetric) tend to evolve on slower time scales, 
but they appear to have converged and reached steady state
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Transport Nearly Doubles With Increased 
Binormal Resolution

• Similar to ETG-ai benchmark paper [Nevins et al. 2006]

• With such strong shear suppression, can reduce binormal width (Lx=2Ly)

• Additional runs demonstrate convergence with radial resolution (dx →
1.33dx), velocity space (nvel=128→288), and parallel orbit time (nτ=10→14)
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Including Toroidal Rotation & Parallel Flow Shear 
Does Not Affect These ETG Scale Simulations

• At this level of shear and box size, there is little difference when including 
toroidal flow (Mtor) and parallel flow shear (γp)
γE=0.9
γp=(q/ε)γE=4.32
Mtor=0.6
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Turbulence Characteristics Qualitatively Constant
• While quantitative transport has varied considerably (χe=2-8ρe

2vTe/LTe), 
qualitative turbulence characteristics are largely unchanged

• In the presence of E×B shear, eddies remain elongated (but tilted) with 
Lr≈3Ly
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Spectra Are Anisotropic In The Presence Of 
E×B Shear

• Spectra are anisotropic at high kρe>0.2, contrary to:
– ETG simulations without E×B shear [Nevins et al., 2006]

– Multi-scale simulations without E×B shear [Waltz et al., 2007]
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While The Adiabatic Ion Model Can Be Unreliable 
It Has Been Used For An Initial Scan in s & q

• Earlier (naïve) simulations for comparable box size and resolution were 
run for varying magnetic shear and safety factor

• They used different boundary conditions and adaptive source (relatively 
strong, small perturbed gradients)

• None of the simulations exhibited the transition



Significant Transport Occurs For Window Of s/q
• Higher safety factor recovers larger transport
• Simple fit to simulations for comparison with experiment
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i ŝ1
q~
+

χ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<<
<<
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Model ETG Transport Significant Over Midradius
• Sensitive to safety factor profile (and derivative) – experimental 

uncertainties?

Decreasing qmin (& larger s/q)
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Additional Scaling Expected From Varying 
Collisionality

• Collisionality in MAST stabilizing to trapped electron contributions
• Transport reduced ~25%

• Additional scaling expected with γE and β,∇β
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Summary

• Demonstrating convergence of ETG simulations for large 
magnetic shear, important for spherical tokamak parameters

• Sensitive to simulation boundary (not using spectral flux tube 
representation)

• Adiabatic ion model with E×B shear can reproduce kinetic ion 
results, at least in some cases – expect larger disparity for 
reduced E×B shear (increased drive at ion scales)

• Initial simple transport model seems to recover similar 
behaviour to TGLF predictions (in one instance)





Strong Dependence Of Nonlinear ETG Transport 
On Magnetic Shear Expected

• Interpreting three published sets of simulations assuming a critical 
gradient model
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Strong Dependence Of Nonlinear ETG Transport 
On Magnetic Shear Expected

• Interpreting three published sets of simulations assuming a critical 
gradient model
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Strong Dependence Of Nonlinear ETG Transport 
On Magnetic Shear Expected

• Interpreting three published sets of simulations assuming a critical 
gradient model
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Strong Dependence Of Nonlinear ETG Transport 
On Magnetic Shear Expected

• Interpreting three published sets of simulations assuming a critical 
gradient model
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Strong Dependence Of Nonlinear ETG Transport 
On Magnetic Shear Expected

• Interpreting three published sets of simulations assuming a critical 
gradient model
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ST-ETG Modeling Goals
Linear stability

• Known linear dependence for low beta, modest shaping [Jenko et al. 2001]

• TGLF will hopefully capture modifications at high beta – benchmarking 
with GS2, GYRO, GKW is underway [motivated by Roach, EPS 2009]
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